é MARO $ 1392 D

et e Tl e+ e

e o e T

RELATIVE UTILITY OF SELECTED
SOFPTWARE REQUIREMENT METRICS

THESIS

James H. Byers, Captain, USAF

AFIT/GSS/LSY/91D-4

Mﬁ'ﬂ-ﬁf\ 92-04825
\ Brem e stanrment or e we soce IITHIIIEE

T AIR UNIVERSITY S
AIR FORCE INSTITUTE OF TECHNOLO&Y.

RN

Wright-Patterson Air Force Base, Ohio

92 2 25 141

AFIT/GSS/LSY/91D-4

RELATIVE UTILITY OF SELECTED
SOFTWARE REQUIREMENT METRICS

THESIS
James H. Byers, Captain, USAF

AFIT/GSS/LSY/91D-4

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

Acoension For

[NTIS GRASI 5

DTIC TAB
Unenudunced [j
Justifivatian

| 3 —
| Distg 1batlunlr__ _

Avn*l«bilxty Codes

]l\eil “and/or
Dist Special

‘X/

AFIT/GSS/LSY/91D-4

RELATIVE UTILITY OF SELECTED SOFTWARE

REQUIREMENT METRICS

THESIS

Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Software Systems Management

James H. Byers, B.S.

Captain, USAF

December 1991

Approved for public release; distribution unlimited

Preface

The objective of this study was to determine the
relative utility of selected software requirement metrics in
assessing the productivity of the software requirements
analysis process and the quality of the products of this
process. A broader goal was to provide some of the
information needed to make intelligent choices of requirement
metrics on which to focus further research efforts and, more
importantly, to use on future software developments. This
objective was met by collecting information about the
perceptions that practicing software professionals have of

the usefulness of selected requirement metrics.

Many people have played a role in conducting this study.
My thanks extend to the various people who took the time to
respond to my rather lengthy questionnaire. Thanks alsc go
to my thesis advisor, Mr Dan Ferens, for providing the
guidance and freedom that allowed me to complete this study.
Finally, I am especially grateful to my wonderful wife Laui«n
for helping me keep this research effort in the rroper

perspective.

Jaunes H. Byers

ii

Table of Contents
Page
2 o= - VoL - ii
List Of FigUreS uiieiieeeceesososssossonsnossnoscsansnannass v
LisSt Of TablesSviiiiieeeeeecsovososnascsnnasonasnenasos vi
ADSE LAl ¢ttt v et e et s eeeenesesessoosnasasosssassssossaansnanes vii
I. Introduction........cciieeenncennnns S et eeccssesssenaans 1
General ISSUE......ceveetesosnsssscassnscscsssscanssss 1
Specific Problem............. e et .. 3
Research Objectives.......... ceenas et eratace s .. 4
RESEAICH SCOPB. .. c.veeetetsossscasssasssasassssnnnsce 5
Basic Methodology ... cveeiineeecansoncacconans feveeas 6
Investigative Questions... ...ttt sracanns 7
Background..........cciceceeecacens G eeeestaeanesoans 8
II. Literature RevView.........ciccieeeretecoacnoscscsoancs 10
Process Metrics........cceueeen S ees e teces st easecaaaans 10
Product MetriCS .. v e eceeaanssseconssesanacnonoanss 14
Measures of Requirement Amblgulty 15
Measures of Specification Completeness 23
Measures of Requirement Verifiability
(TesStability) ...vieeeeeeraceancasaracenconanns 28
Measures of Specification Consistency 29
Measures of Specification Modifiability 30
Measures of Requirement Traceability 31
Measures of Specification Usability During
Operation and Maintenancecceeeeeeeceess 31
Checklist and Worksheet Measures of
Specification Qualityccciivieeccnnencennns 32
CONCIUSION. .. it ittt ittt teecanensonenssassonsaanns 34

iii

Page

ITI. Methodologyiveteinreeeineecsoencannesansancsens 36
Research Methodology.....cceveiiieinneereereeeneennns 36
Justification of Approach.........ccccieceecnsecnnnns 39
Survey INStrUmMent. ...t eereecnccecsassscncssanss 39

Datd COlleCtion. . i ineeeererenesnssassancancannsesns 45

DAata ANAlYSiS. .. uveeerieneneeosenesosecoessecsoonnans 46
CONCIUSION. it ittt ittt ieecteneensccacnsacsccnsananss 49

IV, FiNAiNgS....:ieetieeseeeeeeseanoanesasssassanssananss 50
Demographic Information.........ceieeireeetenccenenes 50
Investigative Questions 1 — 3.....cicerveeccennsonsc 52
Investigative QUEeStion 4......ccceeeoeccccnccacnannc 52
Investigative Question 5.......c0 it icocacnaciason 59
Investigative QUEeStion 6.....cctiieteeeerccoccnnanns 61
Investigative QUEeStiOon 7....cccetieteccescasnasnanns 61

1600} s Vo RUT- No) o P ceeeecaane 62

V. Conclusions and Recommendations..... eeseeane J R - X
Project Overview.......cceeeeeceess ceet et et et aane .. 63

60e} s TaBRUT=5 Net o ¥- 1N cerceesentanas 64
Closing Discussion.......ccevieenncans S eerreseaacene 65
J:T=Tolel111(1=3 o =R ule No) o 1= 1NN 69

Appendix A: Software Requirements Analysis Metrics

QUESLIONNALIre. ... ittt it iieenenneenncanees 71
Appendix B: Interview Discussion TOPiCS .. veeereeeneann 100
Appendix C: Questionnaire Response Data@......eceveeeens 101
Bibliography............. ettt c et ecceacs st a et 108
Y 8 - 111

iv

Figure

Page
Comprehension and Misinterpretation Measurement
L o= B - - Y 17
Composite Specification Modelcciiivenn. 27
Example Of Scale Used on Questionnaire 42
Overall Scores (Perceived Metric Utility) 56
Questionnaire Statement #6 Mean Scores (QOvert
Opinion of Metric Utility) ...veireeineeeneneneennn 57
Questionnaire Statements #1—5 Mean Scores vs
Statement #6 MEAN SCOTES . v v vvveeeereeoseeoesnnons 58

Table

Page
Candidate Requirement MetriCsSc.ecvetencervanss 35
Requirement Metrics Included on Questionnaire 43
Respondent Demographic Informationc.u.0.. 50
Relative Ranking of Metrics Included on the
QUESELIONNALLE ..ttt ie ittt etaonecanacesnsesncannons 54
Least Useful Requirement MetricCsvvveeeceneen 60

vi

AFIT/GSS/LSY/91D-4

Abstract

s
The objective of this study was to determine the

relative utility of selected software reguirement metrics in
assessing the productivity of the software requirements
analysis process and the quality of the products of this
process. This objective was met by collecting information
about the perceptions that practicing software professionals

have of the usefulness of various requirement metrics.

The study employed a two part methodology. The first
part utilized Basili's goal/question/metric paradigm to
identify specific goals of the measurement effort and to
identify requirement metrics worthy of further investigation.
The second part employed a typical research design to gather
perceptions that software professionals have of the utility

of several metrics selected from those identified earlier.

The study produced inconclusive results and further
research is recommended. Results were based on a small
sample and the data only reiterated the mixed opinions that
software professionals have of the usefulness of software
metrics. One significant finding is the consensus that a
metric must be precisely defined for it to be accepted by the

software community. __

[l SO

vii

RELATIVE UTILITY OF SELECTED SOFTWARE

REQUIREMENT METRICS

General Issue

Managing software development has become increasingly
difficult as the software programs under development have
become more complex and the number of tasks that software
programs perform has grown. Because software development has
grown more complicated, the costs and length of development
efforts have rapidly increased and continue to rise. As
developments havg grown more complex and costly, an axiom has
emerged from the software development field: The proper use
of software metrics is essential to the successful management
of software development efforts (Mills, 1988:15).
Furthermore, the use of software metrics shows great promise
in enhancing the quality of software products. As software

quality has become an increasingly important issue, measuring

the quality of software processes and products has also

increased in importance.

Software metrics are used to quantitatively measure the
essential features of software so that comparison of the
features can be made against some standard; usually a
requirement, goal, or expectation. Software metrics are
classified as either process or product metrics and are
applied to either the development process or the software
product developed. Process metrics quantify attributes of
the development process and environment, whereas product

metrics measure characteristics of the software: product.

Several recent reports have highlighted the usefulness
of software metrics as tools used in software developments.
The 1989 National Research Council Air Force Studies Board
Committee on Adapting Software Development Polic:ies to Modern
Technology recommended the Air Force mandate the use of
software engineering environments of which the application of
software metrics is a vital part. The committee also
specifically recommended the Air Force use software metricCs
as quality indicators and to enhance evaluation of software
characteristics. A 1987 Defense Science Board report on
military software included recommendations that the
Department of Defense develop software metrics tO measure
software quality, completeness, and implementation progress.

Lastly, a 1984 Air Force Studies Board also recommended the

Air Force develop tools, including software metrics, to aid
in software developments. (National Research Council,

1989:28, 38, 47—50, 63—66)

Specific Problem

Software metrics have been developed for and are used
during virtually every phase of the software life cycle. The
first metrics were developed to measure source code program
length and complexity. Efforts were then made to correlate
these measurements with development and maintenance costs and
efforts. More recently, metrics which quantify the
qualitative attributes of software designs have gained
prominenée. However, relatively few metrics have been
developed for use during the requirements analysis phase of
the software life cycle. This is truly unfortunate, since

requirement metrics can be particularly useful.

Requirement metrics serve many purposes. Requirement
metrics can be used for project cost estimation and manpower
allocation. They can be used to assess and reduce the
complexity of the requirement specification by identifying
inconsistent or poorly structured requirements. Requirement
metrics can be more useful than other metrics; they can be
used to reduce the complexity of the design process, and to

make intelligent tradeoffs between manpower allocations among

projects, project deadlines, and software performance
targets. They can help in choosing between alternative
strategies for later phases of the development life cycle;
for instance, to guide design and testing. They can also
help in deciding if and how to use complexity reduction
techniques. In summary, requirement metrics can be useful
because they are applied in the earliest stage of development
and can help guide analysts and developers to better results
during system development. (Ramamoorthy, 1986:81;

Ramamoorthy, 1985:111-112)

In order to make intelligent choices of requirement
metrics on which to focus further research efforts and to use
~on future software developments, information about the
utility of various metrics is needed. However, only a meager
amount of research has been conducted to identify useful
requirement metrics; i.e., requirement metrics that can be
used effectively. This research effort is intended to

provide some of this information.

Research Obijectives

The objective of this study is to determine the relative
utility of selected software requirement metrics in assessing
the productivity of the requirements analysis process and the

quality of the products of this process. This objective is

met by determining the relative utility of selected software
requirement metrics to practicing software engineers and
computer scientists, persons serving in a software engineer's
or computer scientist's position, software systems project
managers, persons teaching courses in a software engineering
or computer science curriculum, and persons performing
research in the area of software metrics. (Hereafter, these
persons are referred to as software professionals.) Tne
perceptions these software professionals have of the utility
of software requirement metrics provide an indication of the
usefulness of the metrics when applied to actual requirements

analyses.

Research Scope

The first part of this study includes an extensive
review of past research and available documentation on
various topics dealing with requirements analysis and
software metrics. The second part is limited to an analysis
of the perceptions that software professionals have of the
utility of selected requirement metrics in assessing the
productivity of the requirements analysis process and the

quality of the products produced by this process.

This study does not address the correlation of

requirement metric measures, estimates, and predictions with

actual software product or process characteristics.
Furthermore, no attempt is made to collect data about
quantifiable attributes of the software requirement process
or products, nor is any attempt made to measure the
competency of the software professionals taking part in this
study. Rather, this study focuses on the utility of selected

or candidate metrics for use during software requirements

analyses.

Basic Methodology

Although a detailed discussion of the research
methodology is provided in Chapter III, an overview is

provided here to help the reader better understand the

ensuing text.

The design of this study is based in part on the
goal/question/metric paradigm proposed by Basili and Rombach.
This paradigm consists of three steps. The first step is to
identify a goal or set of goals. In most cases the goal is
to improve a process or product. The second step involves
formalizing the goal into questions that, if answered, result
in realization of the goal. The questions must focus on
factors that are germane to the goal and are usually posed in
the form: Does a relationship exist between input variable A

and output variable B? In the third and last step, metrics

are developed or identified to provide the information needed
to answer the questions posed in step two. (Basili,

1987:350—351; Shepperd, 1990:312)

After these actions have been performed, the metrics
identified in step three must be examined to see which will
most likely help attain the goals set in step one. This may
be accomplished in several ways. The method used in this
effort was to survey software professionals about their

perceptions of the utility of the metrics selected in step

three.

Investigative Questions

In order to determine the relative utility of various
requirement metrics, several issues must be investigated.
The first of these issues are posed in the form of questions

using the goal/question/metric paradigm:

(1) what are the specific goals for improving the
requirements analysis phase of the software

development life cycle?

(2) What questions can quantify these goals?

(3) what metrics might provide the information

needed to answer these questions?

Once these questions have been answered, specific
questions can be asked about the metrics identified in the

answer to guestion three:

(4) What is the relative ranking, in terms of
perceived utility, of the software metrics

available for use during requirements analysis?

(5) Which requirement metrics, if any, are ranked
significantly higher than the others? Which are

ranked significantly lower?

(6) Are there significant differences between the

rankings for product and process type metrics?

(7) Is there a significant correlation between a
software professional's experience and the
perception of the wutility of a particular

requirement metric?

Background

As stated earlier, software metrics are used ¢to
quantitatively measure the essential features of software so
that comparison of the features can be made against some
standard; usually a requirement, goal, or expectation.

Although metrics have been developed for and used during

virtually every phase of the software life cycle, and even
though requirement metrics can be more useful than other
metrics, relatively few requirement metrics have been
developed. A discussion of these requirement metrics is

provided in the following chapter.

Il1. Literature Review

This chapter is intended to provide a review of the
software metrics that have been developed for use during the
requirements analysis phase of the software life cycle. To
this end, this chapter is essentially a compendium of various
requirement metrics. Additionally, other measures and
measurement techniques which fall under a loose definition of
the term "software metric" and which may be of value during
requirements analysis are discussed. For organizational
purposes, this literature review is divided into two sections
corresponding to the two basic categories of metrics; process
and product metrics. Product metrics have beé% further
categorized according to the characteristic of the product
they are intended to measure. Lastly, please note that the
terms "metric" and "measure" used throughout the following

text are interchangeable.

Rrocess Metrics

The IEEE Guide for the Use of IEEE Standard Dictiopnary
of Measures to Produce Reliable Software states that "process
measures address cause and effect cf bkoth the s:atic and
dynamic aspects of the development and support management
processes necessary for maximizing productivity and quality"

(IEEE, 1989:27). In other words, process metrics are

10

measures applied to the development process in order to
quantify attributes of the development process and
environment (Conte, 1986:19—20). These measurements are made
in order to better understand the process and, eventually,

improve it.

The IEEE Standard Dictiopnary of Measures to Produce
Reliable Software identifies several metrics that may be
applied to the requirements analysis process. The first
measure included in this discussion, named the fault-days
number, "“represents the number of days that faults spend in
the software system from their creation to their removal."
The information collected for this measure includes the phase
and date when the fault was introduced in the system, and the
phase, date, and time when the fault is removed. The fault-
days number is computed as follows:

For each fault detected and removed, during any

phase, the number of days from its creation to its

removal is determined (fault-days).

The fault-days are then summed for all faults

detected and removed, to get the fault-days number

at system level, including all faults

detected/removed up to the delivery date. In cases

when the creation date is not known, the fault is

assumed to have been created at middle of the phase

in which it was introduced. (IEEE, 1989:42—43;

IEEE, 1988:16—17)

The second applicable process measure from the IEEE

Standard is the error distribution measure. This metric

"involves the analysis of the defect data collected during

11

each phase of the software development" and "allows ranking
of the predominant failure modes." The data needed to
perform this measure is collected in order to adequately
describe the errors. This data includes error type, error
severity, the phase the error was introduced into the system,
and measures that can be taken to prevent reoccurrence of
similar errors. Faults associated with one another are
identified, as is each fault's discovery mechanism, including
the reasons any associated faults were previously undetected.
The error distribution is determined as follows:

The ([data] for each error are recorded and the

errors are counted according to the criteria

adopted for each classification. The number of
errors are then plotted for each class. The errors

are classified and counted by phase, by the cause,

and by the cause for deferred fault detection.

Other similar classifications could be used such as

the types of steps suggested to prevent the

reoccurrence of similar errors or the types of

steps suggested for earlier detection of the
corresponding faults. (IEEE, 1989:49-51; IEEE,

1988:19)

The IEEE Standard also describes a measure of the
manhours per major defect detected during software product
inspections. "This measure provides a quantitative figure
that can be used evaluate the efficiency of the . inspection
process" and can be used to evaluate inspections of
requirements specifications. The data needed to compute this

measure are:

Ty = Time expended by the inspection team in
preparation for the inspection meeting.

12

T2 = Time expended by the inspection team in
conduct of an inspection meeting.

Si = Number of major (non-trivial) defects detected
during the ith inspection.

I = Total number of inspections to date.

This measure is implemented as follows:

At each inspection meeting, record the total
preparation time expended by the inspection team.
Also, record the total time expended in conducting
the inspection meeting. All defects are recorded
and grouped into major/minor categories. (A major
defect is one which must be corrected for the
product to function within specified requirements.)

The inspection times are summarized and the defects
cumulatively added.

The manhours per major defect detected is:

I
2 (T + T2)i
M = —i=1 -
3, i
i=1

(IEEE, 1989:52—53; IEEE, 1988:19)

The last applicable process metric identified in the
IEEE Standard, named the defect index, is actually both a
process and a product measure. *This measure provides a
continuing, relative index of how correct the software is as
it proceeds through the development cycle." It consists of
eight primitives for each life cycle phase, including three
weighting factors for defect severity level. (An item 1is

considered primitive if it cannot be partitioned into

13

subordinate components. For the purposes of this study, a
primitive is an elementary data item.) The primitives from
each phase are mathematically combined to compute a phase
index, after which all phase indices are summed to compute
the overall defect index. (IEEE, 1989:48-49; IEEE, 1988:18-—

19)

The last process measure which may be used during
requirements analysis and, in fact, during any and all 1life
cycle phases is a schedule progress metric proposed by
Schultz. This measure "tracks the .. ability to maintain the
software development schedule by tracking the delivery of
software work packages defined in the work breakdown
structure." It takes the following form:

Program Schedule (months)
BCWP
BCWS

Estimated Schedule (months) =

where BCWP is the budgeted cost of work performed and BCWS is
the budgeted cost of work scheduled; two fairly common cost

accounting terms. (Schultz, 1988:22)

Product Metrics

Product metrics are measures applied to a software
product in order to quantify attributes of that product
(Conte, 1986:19—-20). These measurements are made in order to

better understand and, eventually, improve the product. The

14

product to be measured and of interest in this research
effort is the product of the requirements analysis process; a

formal or informal software requirements specification.

For organizational purposes, it 1is convenient to
associate possible requirement product metrics with the
qualities they are intended to measure. To that end, the
most appropriate qualities to use are the characteristics of
good software requirements specifications (SRS) as defined in
the IEEE Guide to Software Reguirements Specifications.
According to the IEEE Guide, a good SRS is (1) unambiguous,
(2) complete, (3) verifiable, (4) consistent, (5) modifiable,
(6) traceag}e, and (7) useable during the operation and

maintenance phase. (IEEE, 1984:11—13)

Measures of Requirement Ambiguity. (IEEE characteristic
(1) unambiguous.) Gause and Weinberg have proposed using "an
ambiguity poll to estimate the ambiguity of a requirement.*
This ambiguity poll is performed “whenever a piece of
requirements work is said to be finished" with the purpose of
identifying ambiguous requirements. The poll is conducted as
follows:

(1) Gather a group of people to answer questions

about the document whose ambiguity 1is to be

measured.

(2) Be sure that there is no pressure to conform,
or no influence of any sort of one participant on
another.

15

(3) Propose a set of questions, each of which can
be answered with a number, such as: How fast? How
big? How expensive? What capacity?

(4) Estimate the ambiguity by comparing the
l1ighest and lowest answers.

(5) Interview the high and low estimators to help
locate the sources of the ambiguity.
Gause and Weinberg advise that, to obtain the most reliable
results, "the group used for estimating ambiguity should be
as diverse as possible, at the very least including a sample
from each population that will be affected by the eventual

product." (Gause, 1989:217-224)

Cioch proposes a similar technigque to measure an
iMividual's misinterpretation and comprehension of
statements. His method, which may also be used to identify
ambiguous requirements, is based on short-answer questions as
opposed to the open-ended questions used by Gause and
Weinberg. Cioch describes his technique as follows:

The proposed approach to measuring
misinterpretation and comprehension involves the
use of short-answer items in a test instrument. In
order to differentiate between misinterpretation
and comprehension, the measurement technique must
be able to distinguish between not krowing the
correct answer and giving a wrong answer.

The short-answer question type developed to yield
this distinction is a medified version c¢f a
standard true/false question. . [The] participant
is presented with a collection of statements, the
truth or falsity of which must be judged. Instead
of responding true or false, the participant
answers with a number from 1 to 5, depending upon
which of the following best describes the
participant's view of the statement's veracity:

16

am certain this statement is false

am fairly sure this statement is false
don't know

am fairly sure this statement is true
am certain this statement is true

"N W
i
HHHH H

[Points are awarded based on whether the statement
is, in actuality, true or false, and on the
participant's response.] -~ For the measure of
comprehension, points are awarded only when the
participant is either fairly sure or certain of the
correct answer. . In measuring misinterpretation,
points are awarded only when the participant is
either fairly sure or certain of an answer, and
that answer is incorrect. - Assuming the
particular statement is true, the following
relationship exists between points awarded for the
comprehension and misinterpretation measures:

“ Comprehension and Misinterpretation Measurement Scales
“ Compre- Misinter-
Response hension pretation
[lz_am certain this statement is false 0 2
I am fairly sure this statement is false 0 1
I don't know 0 0
I am fairly sure this statement is true 1 0
I am certain this statement is true 2 Q

Figure 1. Comprehension and Misinterpretation
Measurement Scales (Cioch, 1991:87)

A complementary measurement scheme is used when the
statement is false. (Cioch, 1991:86-87)

The IEEE Standard Dictiopnary of Measures to Produce
Reliable Software identifies the technique of cause and
effect graphing as a means of identifying both ambiguous and
incomplete requirements:

Cause and effect graphing aids in identifying
requirements that are incomplete and ambiguous.

17

This [technique] explores the inputs and expected
outputs of a program and identifies the
ambiguities. Once these ambiguities are
eliminated, the specifications are considered
complete and consistent.

[Furthermore,] a cause and effect graph is a formal
transformation of a natural language specification
[for example, written in English) into its input
conditions and expected outputs.

The primitives (data) needed to compute this measure include:
List of causes: distinct input conditions

List of effects: distinct output conditions or
system transformation (effects are caused by the
changes in the state of the system)

Aexisting = number of ambiguities in a program
remaining to be eliminated

Atot = total number of ambiguities identified

The measure is computed as follows:

Identify all requirements and divide them into
separate entities. Analyze the reguirements to
identify all the causes and effects in the
specification. After the analysis is completed,
assign each cause and effect a unique identifier.
For example, El1 for effect one or Il for input one.

To create the cause and effect graph:

(1) Represent each cause and each effect by a node
identified by its unique number.

(2) Interconnect the cause and effect nodes by
analyzing the semantic content of the specification
and transforming it into a Boolean graph. Each
cause and effect can be in one of two states: true
or false. Using Boolean logic, set the possible
states of the causes and determine under what
conditions each effect will be present.

(3) Annotate the graph with constraints describing
combinations of causes and effects that are
impossible because of semantic or environmental
constraints.

18

(4) Identify as an ambiguity any cause that does
not result in a corresponding effect, any effect
that does not originate with a cause as a source,
and any combination of causes and effects that are
inconsistent with the requirement specification or
impossible to achieve.

The measure [of ambigquities present] is computed as
follows:

Aexistin

CE($%) = -
(%) 100 x (1 Atot

When all of the causes and effects are represented

in the graph and no ambiguities exist, the measure

is 1008%. A measure of less than 100% indicates

some ambiguities still exist. (IEEE, 1989:45—47;

IEEE, 1988:17—18) .

The IEEE Standard describes a second graphical technique
that can be used to identify requirements which may be
misinterpreted. This technique and its associated measures
of requirements compliance are ascertained through a
graphical analysis of the software requirements
specification. This metric, appropriately named the
requirements compliance measure, can be used to identify and
quantify inconsistencies, incompleteness, and
misinterpretations in the software requirements
specification.

This analysis 1is used to verify requirements

compliance by using system verification diagrams

(SVDs), a logical interconnection of stimulus

response elements, (e.g., stimulus and response)

that detect inconsistencies, incompleteness, and
misinterpretations.

19

The primitives for this measure are:
Decomposition elements (DEs):

Stimulus = external input

Function = defined input/output process
Response = result of the function

Label = numerical DE identifier

Reference = specification paragraph number

Requirement errors detected using SVDs:

N3 = Number due to inconsistencies
N2 = Number due to incompleteness
N3 = Number due to0 misinterpretation

The implementation of an SVD is composed of the
following phases:

(1) The decomposition phase is initiated by
mapping the system requirement specifications into
stimulus/response elements (DEs). That is, all
keywords, phrases, functional and/or performance
requirements and expected outputs are documented on
decomposition forms.

(2) The graph phase uses the DEs from the
decomposition phase and logically connects them to
form the SVD graph.

(3) The analysis phase examines the SVD from the
graph phase by using connectivity and reachability
matrices. The various requirement error types are
determined by examining the SVD and identifying
errors as follows:

(a) Inconsistencies — Decomposition elements
that do not accurately reflect the system
requirement specification.

(b) Incompleteness — Decomposition elements
that do not completely reflect the system
requirement specification.

(c) Misinterpretation — Decomposition
elements that do not correctly reflect the system
requirement specification. These errors may occur
during translation of the requirements into
decomposition elements, constructing the SVD graph,
or interpreting the connectivity and reachability
matrices.

20

An analysis is also made of the percentages for the
various requirements error types for the respective

categories: inconsistencies, incompleteness, and
misinterpretation.
. . N1
Inconsistencies (%) = x 100

(N + N2 + N3)

N
Incompleteness (%) = (N1 + Ni T) X 100

N3
(N1 + N2 + N3)

Misinterpretation (%) x 100

(IEEE, 1989:70—72; IEEE, 1988:25—26)

The next measure is not a measure of the ambiguity of
requirement statements, rather it is a measure of the
understandability of semantic statements; i.e., written in
English. Howevér, this measure, the Flesch-Kincaid
readability formula, may be useful in identifying poorly
stated requirements such as easily misunderstood or ambiguous
requirements. The measure is also very simple, and is
described here:

The formula has two factors: (1) sentence length

in words and (2) word length in syllables. It

provides grade level (GL) according to the formula:

GL = 0.39 (Average number of words per sentence)
+

11.8 (Average number of syllables per word)

(Losa, 1983:5)

Another measure of the understandability of semantic
statements is Gunning's Fog Index of Readability. This index

"measures the ease of reading a document based on syntactic

21

properties of the text" (Farbey, 1990:64). It is important
to note that this is not an absolute measure of readability
but, rather, "an index .. that shows changes in [the]
magnitude" of readability (Farbey, 1990:64). Gunning's Fog
Index was originally published in his book The Technigque of
Clear Writing. The Fog Index, as described by Eisenberg, is
calculated using the following procedure:

(1) Divide the number of words [(in the passage] by

the number of sentences. This yields the average

number of words per sentence.

(2) Count words of three or more syllables (except

for proper nouns). Divide this number by the total

number of words in the [passage]l. The answer is

the percentage of difficult words in the [passagel].

(3) Add the average number of words in a sentence
to the percentage of difficult words.

(4) Multiply the total by 0.4. This gives a Fog
count. A count of 10 means the passage should be
easy reading for the average tenth grader.
(Eisenberg, 1982:290)

A third measure of the understandability of requirement
specifications is proposed by Ramamcorthy. Ramamoorthy
proposes using several metrics to measure how understandable
a specification is "because a single metric cannot cover
every aspect of the ([software system]."” He also states
"that the measured values may be objective, but usage of them
should be subjective." These measures include the number of
functions specified (for example, lines of statement of

formal specification language, number of states in state

transition model), the connectivity of functions, the amount

22

of data processed, the connectivity of data, and other

various measures. (Ramamoorthy, 1986:81—82)
Measures of Specification cCompleteness. (IEEE
characteristic (2) complete.) The IEEE Standard identifies

the following measure of "the completeness of the software
specification during the requirements phase" which can also
be "used to identify problem areas within the software
specification." Furthermore, the IEEE Guide for the Use of
IEEE S Jard Dicti E 3 Reliab]
Software reports that this measure has seen moderate use (as
opposed to limited or extensive use) in the software
community. (IEEE, 1989:25—26, 89—90; IEEE, 1988:32—33)

The completeness measure consists of the following
primitives:

B) Number of functions not satisfactorily defined
B2 = Number of functions

B3y = Number of data references not having an origin
Bg = Number of data references

Bs = Number of defined functions not used

Bg = Number of defined functions

B7 = Number of referenced functions not defined

Bg = Number of referenced functions

Bg = Number of decision points not using all
conditions, options

B1o = Number of decision points

23

Bi1 = Number of condition options without
processing

B12 = Number of condition options

B13 = Number of calling routines with parameters
not agreeing with defined parameters

B14 = Number of calling routines

Big = Number of condition options not set
B1g = Number of set condition options having no
processing

B17 = Number of set condition options

Big = Number of data references having no
destination

The measure is implemented as follows:

The completeness measure (CM) is the weighted sum
of ten derivatives expressed as:

10
™ = Z wiDi
i=1

where for each i=1,.,10, each weight wi has a value
between 0 and 1, the sum of the weights is equal to
l, and each Di is a derivative with a value between
0 and 1.

To calculate the completeness measure, the
definitions of the primitives for the particular
application must be determined, and the priority
associated with the derivatives must also be
determined. This prioritization would affect the
weights used to calculate the completeness measure.

Each primitive value would then be determined by
the number of occurrences related to the definition
of the primitive.

Each derivative is determined as follows:

Dy = v~é2~m* = Functions satisfactorily defined

24

o
[8]
I
|
[

”—‘54 - Data references having an origin

(Bg — Bsg)
D3 26 — 550 Defined functions used

Bg — B
D4 £—§7i;—21 = Referenced functions defined

it
l

(Bjp — Bg o . .
Dg = lBlO) = All condition options at decision

points

(B12 — B11)
B2

processing at decision points used

De = - = All condition options with

(B1g — B13) : .
D7 = B1a = Calling routine parameters that

agree with the called routines defined parameters

(B12 — B o .
Dg = 12312 15) = All condition options that are
set

(Bj7 — B . I
Dg = = 17317 L6) = Processing follows set condition
options

(B4 — B

Dio = i“g;—L&z = Data references that have a
destination

The value of the completeness measure is scaled
between 0 and 1 by the appropriate weights. A
score near 1 is considered better than a score near
0. Those values near zero should be traced to the
suspect primitive(s) to highlight any need for
change in the software specification. As changes
are made to the specification, the incremental
specification measure values can be plotted to show
if improvements are being made and how rapidly.
(IEEE, 1989:89-90; IEEE, 1988:32-33)

Another possible completeness metric 1is actually a

measure of the information content of a specification and is

25

referred to as the "Bang" measure by its author, DeMarco. If
we consider specification information content to be analogous
with or related to specification completeness, a measure of
the information content of the specification might also
provide a measure of the completeness of the specification.
Likewise, we might consider the measure of information
content to provide an indication of how useful the
specification will be during operation and maintenance of the
system. Since the components and implementation of this
measure are lengthy and complex, they are not presented here.
And although a brief review of DeMarco's measure is provided
in Appendix A, readers are strongly encouraged to examine

DeMarco's work for these details. (DeMarco, 1982:80—81)

Agresti provides a set of measures that are somewhat
related to DeMarco's information content measure. Using a
requirements representation called the Composite
Specification Model (CSM) based in part on DeMarco's work,
Agresti experimented with 58 explicit measures. The CSM is
comprised of three views and corresponding notations (see
Figure 2) and acts as a template for specifying requirements.
Agresti's measures are organized according to the three views
of the CSM. The measures associated with the functional view
include a weighted function count and numerical counts of
functional primitives, interfaces, internal arcs, internal

data items, system input/output data items, and file

26

input/output data items. The measures associated with the
contextual view include numerical counts of entities, events,
relationships, attributes, and value sets. The measures
associated with the dymamic view include numerical counts of
states and transitions. Although Agresti describes ghese
measures as early indicators of system size and complexity,
they may also provide indications of the completeness of

specifications. (Agresti, 1984)

e —
Composite Specification Model
Viewpoint Notation

Functional Data Flow

Contextual Entity-Relationship |

amic State-Transition

Figure 2. Composite Specification Model (Agresti, 1984)

Boehm hints that several simple, explicit counts may be
used to quantify specification completeness. Boehm states
that a specification must not have any TBDs (use of the
phrase "To Be Determined") nor any nonexistent references to
be considered complete. With this in mind, one can speculate
that counts of the number of TBDs and nonexistent references
in a specification will provide a measure of the completeness

of the specification. (Boehm, 1984:76—77)

The technique of cause and effect graphing described in
the IEEE Standard and discussed under the previous subheading
(Unambiguous) may also be helpful in identifying incomplete

requirements. (IEEE, 1989:45—47; IEEE, 1988:17~-18)

The measure of requirements compliance, also described
in the IEEE Standard and discussed under the previous
subheading (Upmambiguous), may also aid in identifying and
quantifying incomplete requirements. (IEEE, 1.):70-72;

IEEE, 1988:25-26)

M ¢ . i Fiabilj r pility) .
(IEEE characteristic (3) verifiable.) According to the IEEE
Guigde to gSoftware Requirements Specifications, “a requirement
is verifiable if and only if there exists some finitg cost-
effective process [(to] check that the software product meets
the requirement" (IEEE, 1984:12). In other words, if we can

cost-effectively test a requirement, it is verifiable.

Ramamoorthy and others have proposed requirements
complexity metrics that can be used to infer the cost-
effectiveness, or difficulty, of testing requirements.
Ramamoorthy focused on measuring complexity during the
requirements phase and developed what is termed "a spectrum
of metrics" for requirements written in the control flow
requirement specification language RSL. (RSL is based on the

control flow and entity-relationship models of software

28

specification.) The control flow model is implemented
through a control flow graph consisting of nodes (specifying
processing operations) and connecting arcs. The proposed
complexity metrics are based on measures of the essential
elements of the specification language and model such as the
number of nodes, connecting arcs, and paths in the network.
The proposed metrics include several which are specifically
identified to infer a measure of the difficulty of testing
specifications and, therefore, the verifiability of the
specification. Again, since the details of these measures
are lengthy and complex, they are not presented here. And,
once again, although a brief review of these measures 1is
provided in Appendix A, readers are encouraged to examine
Ramémoorthy's work for further details. (Ramamoorthy,

1985:113-115)

Measures of Specification Copnsistency. (IEEE
characteristic (4) consistent.) The IEEE Standard Dictionary
of Measures to Produce Reliable Software describes a simple
measure of the number of conflicting requirements.

This measure is used to determine the reliability

of a software system, resulting from the software

architecture under consideration, as represented by

a specification based on the entity-relationship-

attribute model. (IEEE, 1989:53; IEEE, 1988:21)

It is implemented and interpreted as follows:
The mappings from the software architecture to the

requirements are identified. Mappings from the
same specification item to more than one differing

29

requirement are exa.iined for requirements
inconsistency. (If the same specification item
maps to two different requirements items, the
requirements should be identical. Otherwise, the
requirements are inconsistent.) Mappings from mcre
than one specification “tem to a single requirement
are examined for specification inconsistency.
(IEEE, 1989:53—54; IEEE, 1988:21)

The measure of requirements compliance described in the
IEEE Standard and discussed under the previous two
subheadings (Upnambiguous and Complete) may also a‘A4 in

identifying and quantifying inconsistent requirements.

(IEEE 1989:70—72; IEEE, 1988:25—26)

Measures of Specification Modifiagbjlity. (IEEE
characteristic (5) modifiable.) One criteria for

modifiability defined in the IEEE Guide to gSoftware
Requirements Specifications is that "the same requirement
should not appear in more than one place in the
[specification]" since redundancy can easily 1lead to
inconsistencies (IEEE, 1984:12). Therefore, any of the
measures and techniques which help identify redundant or
inconsistent requirements (for example, some of the measures
discussed under the previcus subheading (Lonsjistent)) may

also aid in measuring the modifiability of specifications.

Ramamocorthy has proposed several dependency metrics for
requirements written in the control flcw requirement
specification language RSL that can be used to measure "the

dependency of parts of the software cn other parts"®

30

(Ramamoorthy, 1985:114). These dependency metrics may
provide indications of the modifiability of <the
specification.

The dependency metrics measure the dependency of
parts of the software on other parts. The greater
this dependency the more the chance that
modification of a part of the software due to a bug
will lead to other bugs in dependent parts of the
program. This is the ripple effect. One metric
for this is the number of requirement networks
(R_NETs) that are enabled directly or indirectly

through a sequence of other R_NETs. {Ramamoorthy,

1985:114)

Measures of Requirement Traceability. (IEEE
characteristic (6) traceable.) The IEEE Standard describes

an extensively used measure which "aids in identifying
requirements that are either missing from, or in addition to,
the original requirements." This measure is implemented and
interpreted as follows:

A set of mappings from the original requirements is

created. Count each requirement met by the
architecture (R1l) and count each of the original
requirements (R2). Compute the traceability

measure (TM):

R1
™ = R2 X 100%

When all of the original software requirements are
covered 1in the software architecture, the
traceability measure is 100%. A traceability
measure of 1less than 100% indicates that some
requirements are not included in the software
architecture. (IEEE, 1989:47—48; IEEE, 1988:18)

M f £ 5 : bili . : . j

Maintenance. (IEEE characteristic (7) useable during the

31

operation and maintenance phase.) The IEEE Standard
identifies a measure of the quality of software documentation
and source listings. This measure, determined through the
use of questionnaires, may identify the areas of any software
product which might be inadegquate for use in a software
maintenance environment. It is described in the IEEE
Standard as follows:

Two questionnaires, the Software Documentation

Questionnaire and the Software Source Listing

Questionnaire, are used to evaluate the (format zad

content of] software products in a desk audit [from

a maintainability perspective]. The questionnaires

are contained in Software Maintainability—

Evaluation Guide. The guide can be ordered from

the Air Force Operational Test and Evaluation

Center. (IEEE, 1989:83—84; IEEE, 1988:29)

The measure of information content of a specification,
referred to as the "Bang" measure and discussed under an
earlier subheading (Complete), may also provide an indication
of how useful the specification will be during operation and
maintenance of the system. For example, a specification with
a high measure of information content might be more useful

when performing maintenance than a specification with a low

measure of information content. (DeMarco, 1982:80—81)

S K1i 3 ks] £ g { £] .
Quality. One popular technique of measuring the quality of a
software requirement specification 1is not appropriately

listed under any of the characteristics of a good

specification listed above, since it really measures the

32

quality of the document as a whole. This technique involves
using checklists or worksheets in a complete review or
inspection of the specification. "A checklist is a list of
the properties of the software that together determine
whether or how far the criteria have been met" (Farbey,
1990:64) . More specifically, checklists are "specialized
lists, based on experience, of significant issues [required
to insure] successful software development" that are compared
against a specification in order to verify the specification
adequately addresses those issues (Boehm, 1984:80).
Worksheets are primarily used to translate specific
measurements of items on a checklist into a metric score.
The distinction is that worksheets are used to compute a
metric score whereas checklists are not. Several very
comprehensive sets of checklists and worksheets have been
published by the Air Force Systems Command's Electronic
Systems Division and Rome Air Development Center. Two of
these are the four volume Computer Systems Acquisition
Metrics Handbook prepared by Systems Architects, Inc. and the
three volume Software Quality Measurement for Distributed
Systems technical report prepared by Boeing Aerospace Company

(Boeing Aerospace Company, 1983; Systems Architects, Inc.,

1982).

33

Conclusion

It is important to note that the metrics presented here
are comprised of software metrics specifically developed to
measure features of the requirements analysis process and
products, as well as other measures and measurement

techniques that may be of value during requirements analysis.

Whether a measure is developed for a specific purpose or
if it is being tested in a new application, the successful
use of metrics depends on the user's enforcement of a
disciplined data collection process and the serious review of
the data collected for each metric. When properly
implemented, metrics can provide early indications of
potential software development problems and can call
attention to and stimulate discussion leading to early

resolution of those problems. (Schultz, 1988:1)

The metrics identified in this literature review and the
references in which they may be found are summarized on the

next page in Table 1.

34

TABLE 1
Candidate Requirement Metrics

Title Reference
Fault -Days Number IEEE, 1989:42—43
IEEE, 1988:16—17
Error Distribution Measure IEEE, 1989:49-51
IEEE, 1988:19
Manhours Per Major Defect Detected IEEE, 1989:52-53
IEEE, 1988:19
Defect Index IEEE, 1989:48—49
IEEE, 1988:18-—19
Schedule Progress Schultz, 1988:22
Ambigquity Poll Gause, 1989:217—-224
Misinterpretation and Comprehension Cioch, 1991:86—87
Cause and Effect Graphing IEEE, 1989:45—47
IEEE, 1988:17—-18
Requirements Compliance IEEE, 1989:70—72
TEEE, 1988:25—26
. , Cq s L
Flesch-Kincaid Readability Formula Losa, 1983:5
Gunning's Fog Index of Readability Eigenberg, 1982:290
Specification Completeness IEEE, 1989:89-90
IEEE, 1988:32—-33
“Bang" — A Functionality Measure DeMarco, 1982:80—-81
Composite Specification Measures Agresti, 1984
Control Flow Measures Ramamoorthy, 1986:81—82

Ramamoorthy, 1985:113-115

Number of Conflicting Requirements IEEE, 1989:53-54
IEEE, 1988:21

Requirements Traceability IEEE, 1989:47-48
IEEE, 1988:18

Software Documentation and Listings IEEE, 1989:83-84
IEEE, 1988:29

Explicit Count(s) Metrics Boehm, 1984:76—77

Fouser, 1988:6
Ramamoorthy, 1986:81—82
Ramamoorthy, 1985:113—-115

Checklist and Worksheet Measures Systems Architects, 1982
Boeing Aerospace Co., 1983
e

35

III. Methodology

This chapter describes the methodology used to obtain
and analyze the data collected during this study. It
includes a discussion of the research methodology followed,
the survey instrument used, the data collection process, and

the data analysis techniques used in performing this study.

Research Methodology

As stated in Chapter II, the research methodology is
based in part on Basili and Rombach's goal/question/metric
(GQM) paradigm. The GQM paradigm consis®s of three steps
(Basili, 1987:350—351; Shepperd, 1990:312). All three are
completed in this study. Incidentally, in performing these
steps, the first three investigative questions put forth in

Chapter I are answered.

The first step is to identify a goal or set of goals.
In most cases the goal is to improve a process or product.
For this study, the overall goal was to improve the
requirements analysis phase of software development.
Although this goal is very admirable, it is vague and is
better represented by two less ambitious, more specific goals

that must be met in order to achieve the overall goal. These

36

specific goals, identified in response to investigative

question number one, were determined to be:

(1) To assess the productivity and quality of the

requirements analysis process.

(2) To assess the quality of the products being

produced by that process. (Dziegiel, 1991)

The second step of the GOM paradigm involves formalizing
the goals into questions that, if answered, result in
realization of the goals (Basili, 1987:350—351; Shepperd,
1990:312). 1In accomplishing this step, these questions were

found to be:

(1) Does the method in which requirements are
solicited from users, specified, and validated
against the original intent of the user have a

significant effect on software quality?

(2) Which requirements analysis and specification
practices produce the highest quality products?

Which produce the lowest quality products?

(3) What percentage of errors found throughout
development, testing, and operation are due to poor
requirements analysis and specification?

(Dziegiel, 1991)

37

These questions are offered as a response to investigative

question number two.

In the third and last step, metrics are developed or
identified to provide the information needed to answer the
questions posed in step two (Basili, 1987:350—351; Shepperd,
1990:312). Since the author does not have the expertise to
develop metrics specifically for this purpose, an alternative
solution had to be found. Consequently, an extensive
literature review was performed to identify metrics that
might provide this information. The collection of metrics
resulting from this review are presented in Chapter II. This
collection was assembled in response to investigative

question number three.

Since the metrics identified in the literature review
collectively held only a small likelihood of providing the
information needed to answer our questions and, subsequently,
fulfill our goals, further research was required. In order
to more positively determine which metrics should provide
this information, an analysis of the perceptions that
software professionals have of the utility of various metrics
identified in the literature review was performed. This
analysis focused on the perceptions that software
professionals have of the utility of various metrics in

assessing the productivity of the requirements analysis

38

process and the quality of the products produced by this

process.

Justification of Approach

A survey and semi-structured interview were used to
collect data of software professionals' perceptions of the
utility of various requirement metrics. These perceptions
provide indications of the usefulness of these metrics when
applied to actual requirements analyses. A survey was used
to gather initial data and a follow-up interview was
selectively used to further investigate significant aspects

of the survey data.

This approach was chosen because no other data was
readily available or could be obtained to adequately fulfill
the research objectives. A better approach would have been
to collect data from actual experiences with the various
requirement metrics. However, since these metrics are only
in very limited use (if they are being utilized at all), the

author was not able to locate data of this kind.

Survey Instrument

The survey questionnaire consisted primarily of a series

of six questions designed to collect information about the

39

utility of selected software metrics when applied to software
requirements analyses. This series of questions was asked
for each metric included on the questionnaire. (The
questionnaire is provided as Appendix A.) Additionally,
three questions were asked to determine the level of
experience each participant had in performing requirements
analyses and their overall experience with software
development. This information was used as the basis for an

analysis of the validity of the data collected.

The questionnaire was designed to determine the metrics
that would be useful during the requirements analysis phase
of software development. The questionnaire included both
process and product metrics that could be applied to,
respectively, the requirements analysis process and formal or

informal software requirements specifications.

There were 18 metrics selected for use in the
questionnaire including 5 process metrics, 10 product
metrics, 1 collection of miscellaneous explicit product and
process measures (grouped together for the sake of brevity),
and 2 worksheet/checklist type measures. Of the 10 product
measures, 4 utilized graphical techniques and 4 were

applicable only to formal requirement specifications.

The selections were based on several criteria. The

first criterion was a desire to include a suitable number of

40

process and product metrics without the total number becoming
burdensome upon the participants. The second criterion was a
desire to include the broadest possible spectrum of different
types of measures; for example, metrics intended to measure
different product qualities, metrics applicable only to
formal specifications, and metrics applicable only to

informal specifications.

The third criterion was the necessity to include an
appropriate number of metrics that have been approved by the
Institute of Electrical and Electronics Engineers Standards
Board; i.e., metrics included in the IEEE_Standard Dictionarv
of Measures to Produce Reliable Software. These were
included so that responses regarding these metrics éould be
compared with the responses regarding the other metrics and
with IEEE data about experiences with these metrics. This
information provided an essential standard with which to

judge the quality of the survey data.

The last criterion was a desire to include a metric that
had little scientific basis in order to provide another
benchmark to compare the data with. This untested measure
would provide a benchmark just as the IEEE measures would,
except at the other end of the experience scale. For this
reason the author created a simple process measure based on a
ratio of the number of requirements already specified to the

estimated total number of requirements to be specified. This

41

measure was also similar to the indicator of requirements
stability suggested in Air Force Systems Command Pamphlec
800-43 (Department of the Air Force, 1990:11). The measure

took the form:

Number of requirements documented
Estimated total number of requirements

Progress = X 100%

This measure was named the Requirements Documentation

Progress metric and was included on the questionnaire.

A list of the metrics included on the questionnaire and
the references they were taken from is provided on the

following page in Table 2.

The series of six Qquestions included on the
questionnaire were not actually Qquestions, but rather
statements that the respondents could agree or disagree with.
In order to collect data to determine the relative ranking of
each metric's utility, the participants were asked to select
an appropriate response to each statement according to a five
point Likert scale (Emory, 1980:271—274). An example of the

scale is provided in the following figure.

—— —
(a) (b) (c) (4) (e)
strongly Neither Agree X Strongly
Agree Agree Nor Disagree Disagree Disagree

Figure 3. Example of Scale Used on Questionnaire

42

TABLE 2
Requirement Metrics Included on the Questionnaire

Title Reference
Schedule Progress Schultz, 1988:22
Requirements Documentation Progress Created for this study
Fault -Days Number IEEE, 1988:16—17
Error Distribution Measure IEEE, 1988:19
Manhours Per Major Defect Detected IEEE, 1988:19
Requirements Understandability Losa, 1983:5
Requirement Ambiguity Gausc, 1989:217-224
Requirements Traceability IEEE, 1988:18
Number of Conflicting Requirements IEEE, 1988:21
Requirements Compliance IEEE, 1988:25—-26
Specification Completeness IEEE, 1988:32-33
Cause and Effect Graphing IEEE, 1988:17—18
“Bang"® — A Functionality Measure DeMarco, 1982:80—81
Composite Specification Measures Agresti, 1984
Control Flow Measures Ramamoorthy, 1986:81—82 .
Ramamoorthy, 1985:113-115
Miscellaneous Explicit Counts Boehm, 1984:76—77
Fouser, 1988:6
Ramamoorthy, 1986:81—82
Ramamoorthy, 1985:113-115
Completeness Checklist Systems Architects, 1982
Reggirements Analysis w%rksheet — Boeii.u Aerospace Cgf, 1383

Five of the six statements parallel the features of an
ideal software metric identified in the Software Engineering
Institute (SEI) curriculum module on software metrics.

According to the SEI, "ideal metrics should be simple,

43

precisely definable, objective, easily obtainable, valid, and
robust" (Mills, 1988:4). These statements were designed to
allow the participant to rate each metric according to
specific and independent factors. It was hoped that this
approach would limit bias in the data. The sixth statement
was intended to determine the participant's overall
assessment of the utility of the metric and could nct be
designed to limit bias in the responses. The six statemencs

are:

(1) This metric is simple to understand and
precisely defined. (i.e., It is clear how this

metric is evaluated.)

(2) The data needed to calculate this metric is
easily obtained before or during requirements

analysis.

(3) The benefits derived from using this metric
outweigh the costs and effort of obtaining the data

to use it.

(4) This metric measures the quality intended to

be measured.

(5) This metric is insensitive to small changes in
the requirements analysis process or product (as

applicable).

44

(6) This metric would be useful during

requirements analysis.

Additional comments about each metric were invited from
the participants. Space was provided on the questionnaire

for this purpose.

Data Collection

Data was collected using a three step process. The
first step involved identifying possible survey participants.
Originally, the survey was intended to include practicing
software engineers and computer scientists, persons serving
in a software engineer's or computer scientist's position,
software systems project managers, persons teaching courses
in a software engineering or computer science curriculum, and
persons performing research in the area of software metrics.
However, in order to keep the validity of the data collected
as high as possible, only software professionals with
experience performing requirements analysis and a fair
knowledge of software metrics were surveyed. Due to these
rather stringent requirements, only a limited number of
persons from the original sample were identified, and would
be asked to participate. Furthermore, since only a limited
number of persons were surveyed (27 Qquestionnaires were sent

to consenting participants and less than half responded),

45

this research should be considered a "pilot study" for

further research in this area.

Next, the participants identified in the first step were
contacted in person or by telephone, to discuss some of the
details of the study and to gain their cdnsent to take part
in the study. When this permission was obtained, a

questionnaire was mailed to the participant.

Finally, follow-up interviews were conducted with
several participants to further investigate significant
aspects of the data collected through the survey. In these
cases, a semi-structured interview was used to probe for the
additional information needed to better understand the
original data. An éxample of the list of items discussed

during an interview is provided in Appendix B.

Data Analysis

Since only a limited number of persons were surveyed
and, subsequently, a limited amount of data collected,
detailed analysis of the data using statistical tests was not
appropriate. However, an analysis using descriptive
statistics Qas performed. This analysis was intended to
answer the remaining four investigative questions put forth

in Chapter I.

46

Descriptive statistics are commonly used to characterize
data. In this study, several descriptive statistics were
used to present and analyze the data including the response
mean and standard deviation. The mean response to a
particular statement was used to compute scores in order to
rank-order the metrics according to the participants'
perceptions of the utility of each metric. The response
standard deviation was used to measure the participants'
level of agreement with statements concerning their

perceptions of the usefulness of each metric.

Mean scores of the responses to each statement and a
ranking of each metric's utility were determined using two
mathematical equations. Equation (1) was used to compute a
mean score for the responses to each of the six statements.

(S5A + 4B + 3C + 2D + E)
N

MEAN SCORE = (1)

where: = number of Strongly Agree responses

= number of Agree responses

= number of Disagree responses

A
B
C = number of Neither Agree Nor Disagree responses
D
E = number of Strongly Disagree responses

N

= total number of responses

Equation (2) was used to compute an overall score for each

metric. The overall score was used to determine the relative

47

ranking of the metrics on the questionnaire based on the

participants' perceptions of the usefulness of each metric.

OVERALL SCORE = MS) + MS2 + MS3 + MSg + MSg5 + 2MSg (2)

where: MS] = mean score on statement #1
MS; = mean score on statement #2
MS3 = mean sScore on statement #3
MS4 = mean Score on statement #4
MSs = mean score on statement #5
MSg = mean score on statement #6

Since the objective of this study was to determine the
perceived usefulness of various metrics, the author felt that
a participant's overall assessment of the utility of each
metric should be of greater importance in the ranking than
his assessment of the specific qualities of the metric. For
this reason the contribution of the score for statement six
is twice the contribution of the scores for each of the other

statements.

Additionally, the data was reviewed to determine if a
significant correlation existed between the software
professionals’' experience and their perception of any or all
of the requirement metrics' utility. Once again, although
information about the experience level of the participants
was collected in the survey, no attempt was made to determine

the competency of the participants.

48

Finally, the data was inspected to determine if some
common thread could be found among the responses that
reflected any significant relationships that may have been

overlooked.

Conclusion

This chapter described the methodology used to obtain
and analyze the data collected during this study. An
analysis of the data collected during this research effort
and a discussion of the findings of this study is provided in

the next chapter.

49

IV. Findings

This chapter presents the results obtained using the
methodology described in the previous chapter. The
demographics of the respondents are presented first and then

each of the seven investigative questions are answered.

Remographic Information

Just under half of the individuals who agreed to
participate responded; only 13 of 27 qQuestionnaires were
returned. The experience 1levels and professional

responsibilities of the respondents are shown in Table 3.

TABLE 3
Respondent Demographic Information

Total number of respondents: 13

Years involved with software development:

S or less: 0 Between 5 & 10: 2 10 or more: 11

Number of times involved with software requirements analyses:

5 or less: 3 Between S & 10: 3 {10 or more: 7

Current professional responsibilities:

Educational: 8 SW Develogmenc: 2 SW Research: 3

50

One point of particular interest is the high ratio of
respondents with educational responsibilities to respondents
with software development or research responsibilities.
Approximately equal numbers of each category agreed toO
participate and were sent questionnaires. However, the
response rate for individuals with educational
responsibilities was much higher than the response rates of

the other categories.

Another important point is that the experience levels of
all of the participants are relatively high. This 1is
primarily a result of the screening process used to select
the participants. As mentioned in Chapter III, in order to
insure the validity of the data collected was as high as
possible, only software professionals with experience
performing requirements analysis and a fair knowledge of
software metrics were surveyed. The success of the screening
process is apparent in the demographics. However, the effort
to keep the data valid also caused a problem in answering the
last investigative question. This unexpected problem is
discussed further in the answer to investigative question

seven.

The last point of discussion is that the total number of
participants is relatively small, as was expected. The small

number of respondents does not provide enough data to draw

51

statistically significant conclusions about the utility of
any or all of the metrics. However, a qualitative analysis
of the data can be and was performed. This analysis is

presented in the following sections.

Investigative Questions] — 3

The first three investigative questions were based on
the goal/question/metric paradigm proposed by Basili and

Rombach (BPasili, 1987:350—351; Shepperd, 1990:312):

(1) What are the specific goals for improving the
requirements analysis phase of the software

development life cycle?
(2) What questions can quantify these gocals?

(3) What metrics might provide the information

needed to answer these questions?

The answers to these questions were presented in the Research

Methodology section of Chapter III and are not repeated here.

Investigative Question 4

The purpose of investigative Qquestion four was to
determine the relative ranking, in terms of perceived

utility, of the software metrics available for use during

52

requirements analysis. The rankings and the overall scores
used to compute the rankings, shown on the next page in Table
4, were determined using the equations discussed previously
in the Data Analysis section of Chapter III. However, as
shown, the differences between the overall scores are trivial
and, therefore, the rankings are meaningless. In other
words, the respondents, as a group, believe the utility of
all of the metrics are about equal. No metric is perceived
as more or less useful than any other metric. This
perception is also reflected in the responses to survey
statement number six. (Statement six allowed the respondents
to directly state their opinions o©of the utility of each
metric.) For tne sake of comparison, a ranking of the
metrics according to the mean scores for statement six are
also shown in Table 4. (The mean scores for all survey

statements are provided in Appendix C.)

Some of the similarities in the two sets of rankings can
be attributed to the scoring system used to rank-order the
metrics. The overall scores were calculated using "two
parts" of the mean score for survey statement six and "one
part" each of the mean scores for statements one through
five. Thus, the rankings by overall score are influenced
twice as much by the responses to survey statement six as by

the responses to the other statements.

53

TABLE 4
Relative Ranking of Metrics
Included on the Questionnaire

Ranking Ranking by
by Statement 6
Title of Metric Overall Score Mean Score
{Overall Score) | (Mean Score)
Error Distribution Measure 1 (23.3) 9 w (3.2) {'
Migcellaneous Explicit Counts 2 (23.2) 2 * (3.5)
Manhours Per Major Defect Detected 3 (23.0) 2 * (3.5) "
Requirements Analysis Worksheet 4 (22.5) 1 (3.7)
Requirement Documentation Progress 5 & (22.3) 6 & (3.3)
Completeness Checklist 5 ¢ (22.3) 2 * (3.5)
Control Flow Measures 7 (21.8) 2 * (3.5) "
Schedule Progress 8 (21.3) 12 = (2.8) "
Requirements Traceability 9 & (21.0) 9 * (3.2)
“Requirements compliance 9 * (21.0) 6 = (3.3) "
Specification Completeness 11 (20.8) 9 = (3.2) “
Cause and Effect Graphin 12 = (20.2) 6 * (3.3) “
Fault -Days Number 12 * (20.2) 12 = (2.8)]
"Bang" — A Functionality Measure 14 (18.8) 12 = (2.8)
Composite Specification Measures 15 {18.3) 15 * (2.7)
Requirements Understandability 16 (18.0) 18 (1.8)
Number of Conflicting Requirements 17 (17.2) 16 (2.5)
Requirement Ambigquity 18 (15.0) 17 (2.3)

NOTES: 1. * signifies a tie in ranking.
2. COverall and mean scores used to determine the

rankings were calculated only to within a 10%P of a
point; i.e., 2.5 points.

54

The finding that the rankings are inconclusive is
supported in that the overall scores are generally within one
standard deviation of each other. Furthermore, the overall
scores and mean scores for survey statement six are generally
all in a range of values corresponding to an indifferent
(neither agree nor dJdisagree) response. This range is
approximately equal to an overall score of 17—25 and a mean
score for statement six of 2.5-3.5. A plot of the overall
scores is provided in Figure 4 and a plot of the mean scores
for statement six is provided in Figure 5. The plots include
error bars equal to the standard deviation for each score in
order to display the trivial differences between overall
scores and between mean scores for statement six. Where the
error bars overlap for scores of two or more metrics, one
score cannot be considered significantly larger or smaller
than another score. These plots make it readily apparent

that the relative rankings are questionable.

One additional finding is apparent in Figure 6. In
Figure 6, the average mean scores for survey statements one
through five and the mean scores for statement six are
plotted together for comparison. It is fairly evident that a
correlation exists between the two sets of mean scores.
(Recall that statements one through five were used to
determine the participants' opinions of how each metric

compared to the five qualities of an ideal metric and

55

(A3TTTIN OTIIOW POATEDI8d) S8I005 [TBIBAQ ¥ 8anbrd

gesp ydexp o8 quby K3 o9jag eax X [-1:1-] [:]: 1)
] moTd ®e9ax ax 1 @8u233 8dUBT 130T ITIqe A3Tn puels iad neeal squmy xboxd 16cad

998y 1IBIT UNCD O NeEsy neesl 02333 Tdwod [dwod Tjuo) soeil brquy repun e8an 3e1q efeq oog BN
B3 I0M 3O9YD OBTW J3uoD WSO Hueg ssned oodg ejubd -oN e3jwby ejuby e3uby oyuen 10133 3Tned s3wby payos

R e B e S e Rl S bt - 4 I

S 1,‘||\0..llv|||§[+. ———— S - —

e
'

"¢ = 1008 srqissod 189MOT ‘g€ = 51008 o1qtssod umm:max .myoz ;

56

(A3TTTIN oTI38W Jo uotutrdO 3I9AQ) SBI0DS UESH 9# JusweIels daTeuuorisand g sanbrg

seapn ydeapn s8 uby K3 oByeg eax a 883 883
2] moTd 89X a1 3 2us3d aduer 30T ITIqe A3Tn puels aad neesl aqumy xboxd 1boad
198y IBT] IUNOD [0 nNBEsR neeal o233d Tdwod tdwo) [juod eoex) brquy Iapun eIn 181d ekeq ooQg 1N
83I0M YoBYUD OBTW I3uU0D WSO bueg esnen oeds siuwby ‘oN ejuby ejwby sjwby oyuen 101y JTned sjwby psyos
A R e Rl B e e Bl el Sl S - BUIREEEEE | S -1 i M 0
- e - e e - - Loy
_
- B Rt Ml - - - - _N
< |
- i thl s st T3 r Y o - . - 3
- - - - T - - v
|
I x I - - B H 5
e =T = T m DS =TT e TToIT e =T TR TS = —rTm T =S TSI TT T oSo D TTo mo T DI : 9
1 = 21008 3arqissod 3Isamol G = 81008 arqrssod 18aybrd FLON

57

SBI00S UL 94 JUBWDIR]S SA SBI0DS UEdN S—T# Siuswa3®ls whﬂMECOﬂumwﬁo 9 mhﬂmﬁm
- =EYA ydeao 88 Juby K3 osjsg ox b egs e8s
8 MOTE 83X 3x 3 ©ueje souet 251 I7ige Latn pueis Iad neesay aqumy x1H0xgd 16014

398y 1I8TT IUNOD 1O
e)I0M ¥OBUD O8TW I3uod WSO bHueg sened oadg gwby

| } t -4 4 { i b 4o 4

neesp neeop 09333 [dwop rdwo) TJuo) ddoeIL STqUy I8puy)

san 181 eAeq o0d an

‘oN ®23wby sjuwby eqwby oyuepn 10317 ITned 8awby psyos

‘:

4

|

JuswelelsS Uydes 103 88I008 uraw 8yl burbeiase
AQ pBuUTW1S319P SI G- SIUBWDILIS IOJ DI0DS UPSN

9 UBWE1PIS DI0DS UBSH [

}) . { ‘ T

3

‘340N

G-7 S3U3WA1RIS DI0DS UESH @

58

statcement six was used to allow the participants to directly
state their opinions of the utility of each metric.) It is
gratifying to see that the participants' overt opinions of
the usefulness of the metrics appear to match their opinions
of how the metrics compare to the qualities of good metrics.
Although the correlation shown in Figure €6 is not
statistically significant and does not prove anything, it
does indicate that the six statement methodology was probably

sound.

Investigative Question S

The purpose of this investigative gquestion was to
determine which requirement metrics, if any, were perceived
as significantly more or significantly less useful than other
metrics. As presented in the previous section, the data does
not indicate that any of the metrics were perceived to be
significantly more useful than the others. Once again, the
respondents generally were indifferent as to the utility of

the metrics on the qQquestionnaire.

However, there is an indication that the measures of
requirements understandability, requirement ambiguity, and
the number of conflicting requirements are perceived to have
the least utility of all the metrics on the gquestionnaire.

These measures placed in the bottom of the rankings and had

overall scores corresponding to the bottom of the indifferent
range. In other words, the respondents, as a group, had
slightly negative perceptions of the utility of these
measures. The rankings and scores for these metrics are

provided below in Table 5.

TABLE 5

Least Useful Requirement Metrics

Overall Overall |[Statement 6

Title of Metric Ranking | Score Mean Score
Requirement Ambiguity 18 15.0 2.3
r_I_Il.x_mber of Conflicting Requirements 17 17.2 2.5
gquirements Understandability _rle 18.0 1.8

During the follow-up interviews, several participants
provided the principal reasons lower scores were assigned to

these measures:

Requirements understandability: “The formula cannot possibly

be reliable for highly technical specifications."

Requirement ambiguity: “This metric is too dependent on the
wording of the questions used in conducting the poll and,

therefore, would be too subjective to be useful."

Number of conflicting requirements: "This metric 1is too

difficult to perform."

60

Investigative Question 6

This question was intended to identify any significant
differences between the rankings for product and process type
metrics. No significant differences were found. A review of
Table 4, Figure 4, and Figure 5 indicates that the five
process metrics included on the questionnaire (schedule
progress, requirements documentation progress, fault-days
number, error distribution measure, -~ °"d manhours per major
defect detected) are perceived to have the about the same
utility as the product metrics.

e

Investigative Question 7

The last investigative question was intended to identify
any significant correlations Dbetween a software
professional's experience and the perception of the utility
of a particular requirement metric. Due to the screening
process mentioned earlier, only relatively highly experienced
personnel were surveyed. A lack of relatively unexperienced
participants make it impossible to determine if any

statistically significant correlation exists.

However, comments written on the questionnaire and made

during follow-up interviews provide some rather meaningful

61

information. These comments, provided by the respondents
with the most experience with software metrics and summarized
here, referred to the formality and preciseness of the
metrics on the questionnaire. These respondents point out
that metrics that are precisely defined and have detailed
descriptions of the use of the metrics would be considered
more useful than metrics that are not precisely or formally
defined. This sentiment reflects the respondents' beliefs
that they would be more confident about the utility of
metrics that are precisely defined as opposed to metrics with
only an implied use. These beliefs are revealed in one
respondent's comments: "The metrics presented are not

defined formally & precisely. .. The need for formalism

{must be stressed]."

Conclusion

This chapter presented the basic findings resulting from
performing this study. A discussion of the significant
conclusions that can be drawn from these findings is provided

in the next chapter.

62

Y. Conclusions and Recommendations

This chapter provides a summary of this study, presents
the significant conclusions that are derived from the
research findings, and offers several recommendations for

revised and follow-on research.

Project Overview

This study was performed in an attempt to gather
information about the usefulness of various software
requirement metrics. A broader goal was to provide some of
the information needed to make intelligent choices of
requirement metrics on which to focus further research
efforts and, more importantly, to use on future software

developments.

The study employed a two part methodclogy. In the first
part, the specific goals of the reguirements measurement
effort and the requirement metrics worthy of further
investigation were identified. 1In the second part, a survey
was conducted to determine the perceptions that software
professionals have of the utility of several metrics selected

from those identified in part one.

63

conclusions

The findings presented in the previous chapter support
only one significant conclusion. Unfortunately, this
conclusion does not directly correspond to the research

objective put forth earlier in this study.

The respondents, as a group, emphatically expressed the
opinion that a metric must be precisely defined for it to be
considered useful. The respondents claimed that, unless a
metric is precisely and formally defined and has a detailed
description of how to use it (implement it), they would be

skeptical about its utility.

This claim is not unreasonable. Kitchenham, Pickard,
and Linkman have stated that "it is clear that we must
improve metrics definitions if metrics are to be properly
validated" and 1later used on software developments
(Kitchenham, 1990:57). It is wunmistakable that the
respondents agree with this opinion. It is also evident the
data collected in this study confirms the validity of Mill's
first criteria for an ideal metric; the requirement for
metrics to be "simple, precisely definable—so that it is

clear how the metric can be evaluated" (Mills, 1988:4).

64

Closing Discussion

Several aspects of the findings deserve further
discussion and are reviewed here. First, it should be made
clear that the rankings derived from the data and presented
in this study are inconclusive. The data does not indicate
that any significant differences between the utility of the
selected requirement metrics exist. For example, eight of
the metrics included on the questionnaire are recommended by
the IEEE for use on software developments but were ranked no
higher or lower than the other measures. (One would expect
the IEEE recommended measures to be ranked at least slightly
‘higher than the other measures.) Ih general, the respondents
were indifferent as to the utility of the metrics on the
questionnaire and reiterated the mixed opinions that software
professionals have of the usefulness of software metrics
(Mills, 1988:17). Furthermore, one metric, created by the
author as a means to help validate the data, ranked higher
than six of the IEEE approved metrics, including one with
"extensive experience in industry®" (IEEE, 1989:26). Although
the IEEE experience ratings are caveated with the statement
"in no way does the experience rating imply that one measure
is better than another," the author wonders how a new measure

can actually be more useful than several other proven

65

measures (IEEE, 1989:25). For these reasons the rankings

should not be considered, in any way, conclusive.

Secondly, much of this study was based on an article by
Farbey in which he identified various metrics for use during
requirements analysis. Many of Farbey's recommended measures
were investigated in the course of this study. In concluding
his article, Farbey points out that "it may be that metrics
are not appropriate” for use with informal specifications
(Farbey, 1990:64). Since metrics used to measure the
qualities of informal specifications are difficult to define
and implement, and since this study found that metrics must
be precisely and formally defined to be useful, this study

may help prove him to be correct.

On the other hand, measures of the characteristics of
formal specifications such as Ramamoorthy's control flow
measures may, in fact, be very useful. Although the
respondents were generally indifferent about the utility of
all of the requirement metrics, the respondents' indicated
(in their responses to survey statement six) that they
believed the control flow measures could be more useful than
other measures. This could be interpreted as an indication
that the respondents believe measures of the characteristics
of formal specifications are more useful than other metrics.

If this interpretation is correct, it would support similar

66

views expressed by Agresti and Ramamoorthy. (Agresti, 1984;

Ramamoorthy, 1986:75—83; Ramamoorthy 1985:111-120)

Additionally, the National Aeronautics and Space
Administration's Jet Propulsion Laboratory (JPL) has been
collecting data of explicit measures of software since the
1970s including several explicit measures of the
characteristics of software requirements specifications
(Bush, 1989:iii; Fouser, 1988:6). After compiling and
analyzing this data "JPL now has a rough measurement
foundation for software productivity and software quality and
an order-of-magnitude quantitative baseline for software
systems" (Bush, 1989:26}, It appears that JPL has made
progress in using quantitative data derived from explicit
metrics, including requirement metrics, to measure software
productivity and quality (Bush, 1989:28). On the other hand,
Agresti experimented with 29 objective measures such as the
explicit counts of number of pages, number of input/output
requirements, number of constraints, and found that "the
simple counts .. were not useful measures because they reflect
the variability that is found in the representation of
requirements” (Agresti, 1984). These efforts provide two
benchmarks with which other experiences with simple, explicit

measures may be compared.

Another benchmark may be provided by Ramamoorthy's

experiments with his control flow measures on a development

67

at the University of Califormia at Berkeley\(Ramamoorthy,
1985:120) . Even though details regarding Ramamoorthy's
experiments were not found during the course 6f this study,
data may be available in the future for use on new efforts

with requirement metrics.

Furthermore, it is also evident the daca collected in
this study confirms a fairly common opinion that readability
formulas such as the Gunning Fog Index or the Flesch-Kincaid
formula "are not particularly useful to the technical writer"
(Riney, 1989:56—57, 208—209). Riney asserts that "the
readability [(of a technical document] is important; however,
the degree of accuracy of the [technical document] can mean
the difference between” a reader successfully interpreting
the text or misinterpreting it. It may be that precise
technical writing, such as the kind required in software
requirements specifications, is incompatible with truly

readable writing.

Although the conclusions of this study emphasize precise
and, therefore, objective metrics, subjective measures may
still be useful and should not be disregarded. For example,
Ross suggests that "“subjective metrics are unreliable for
preliminary identification of anomalies but very useful when

diagnosing their causes" (Ross, 1990:85).

68

Finally, notwithstanding the inconclusive results of
this study, requirement metrics can be very useful. Sheppard
asserts:

The use of metrics derived from specifications and

designs is starting to be developed as a means of

obtaining early feedback [on software quality]. .

It may be argued that this has profound

consequences on the way in which software

development decisions can be made. Certainly, it

augments the traditional decision making by
guesswork or by analogy. (Sheppard, 1990:311)

Recommendations

It is recommended that this research be revised and
repeated. A revised study involving a similar methodology

should include the following changes:

(1) Define the metrics on the questionnaire more
precisely and/or replace them with more precisely

defined metrics.

(2) Provide detailed descriptions of how to use

(i.e., implement) the metrics.

(3) Reduce the number of metrics included on the
questionnaire in order to reduce the burden on the
participants and to insure the validity of the

responses.

69

(4) Survey more software professionals. Include a
larger proportion of persons involved with softwarc
development and fewer persons from the academic and
research areas. The intent is to get more data
from people developing software as opposed to those

in an academic environment.

A revised study based on a new methodology could involve
a more detailed study of only a few metrics. One possible
research effort could be gperformed using one or several
metrics to measure a characteristic of an actual software
requirements specification and comparing those measures to
the perceptions software professionals have of that specific
quality. For example, the IEEE measure of specification
completeness could be used to measure the completeness of a
specification. The results of that measurement could then be
compared to the opinions software professionals have of the

completeness of the specification.

70

Appendix A
Software Requirements Analysis Metrics Questionnaire

This questionnaire is designed to determine the types of
software metrics which may be useful during the requirements
analysis phase of software development. Metrics applicable
to the requirements analysis process and to the software
requirements specification (either formal or informal) are
discussed.

For each metric, please provide the appropriate responses to
the following six statements using the scale shown below:

(a) {b) (c) (a) (e)
Strongly Neither Agree : Strongly
Agree Agree Nor Disagree Disagree Disagree
1. This metric is simple to understand and precisely
defined. (i.e., It is clear how this metric is evaluated.)
2. The data needed to calculate this metric is easily

obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Please also provide any additional comments you may have
directly on the questionnaire.

This questionnaire should take about 45 minutes to complete.
when you have completed it, please return it in the envelope
provided.

Thanks very much for your participation.

71

Requirements Metrics Questionnaire

Please describe your past experience with scftware
development:

1) Approximately how many years have you been involved in

software engineering or management? (circle one)
5 years between 5 10 years
or less and 10 years or more

2) Approximately how many times have you performed or been

involved with software requirements analyses? (circle one)
2 times between 2 between 5 10 times
or less and 5 times and 10 times or more

3) Please provide your present title and briefly describe
your experience with software development.

Present title:

Experience:

72

Schedule Progress

Definition: This metric measures the ability to maintain the

software development schedule by tracking the delivery of
software work packages defined in the work breakdown
structure.

L .
Program Scheduyle = number of months into development
BCWP = budgeted cost of work performed
BCWS budgeted cost of work scheduled

Implementation:

Program Schedule (months)

Estimated Schedule {(months) = BCWP /BCWS

Please use this scale to respond to the following statements:

(a) (b) {c) (a) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calcﬁlate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

73

Requirements Documentation Progress

Defipition: This measure compares the actual number of

requirements documented with the estimated total number ct
requirements to be documented

Primitives:
Number of requirements specified
Estimated total number of requirements to be specified
Implementation:
Number of requirements documented
Estimated total number of requirements

Progress = x 100%

NQTE: Number of requirements can also be replaced with any
objective count such as functions, pages, etc.

Please use this scale to respond to the following statements:

(a) (b) {(c) (a) (@)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

S. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

74

Fault-Days Number

Definition: This measure represents the number of days that
faults spend in the software system from creation to removal.
The goal is to prevent reoccurrence of similar errors and to
detect faults earlier.

C .
(1) Phase when the fault was introduced in the system.
(2) Date when the fault was introduced in the system.
(3) Phase, date, and time when the fault is removed.

Inplementation: For each fault detected and removed, the

number of days from its creation to its removal is determined
(fault-days = FDji) .

FDi = fault days for the ith fault

The fault-days are then summed for all faults detected and
removed, to get the fault-days number at system level,
including all faults detected/removed up to the delivery
date. In cases when the creation date is not known, the
fault is assumed to have been created at middle of the phase
in which it‘was introduced.

Please use this scale to respond to the following statements:

(a) {(b) (ec) (a) (e)
Strongly Neither Agree] strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metiic outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

S. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

75

Error Distribution Measure

Definition: This measure involves the analysis of the defect
data collected during each phase of the software development
and allows ranking of the predominant failure modes. The

goal is to prevent reoccurrence of similar errors and to
detect faults earlier.

o :
(1) Fault type
(2) Fault severity
(3) PpPhase introduced
(4) Preventive measure
(5) Discovery mechanism

Implementation: The primitives for each error are recorded
and the errors are counted according to criteria adopted for
fault classification. The number of errors are then plotted
for each class. The errors are classified and counted by
phase, by cause, and by discovery mechanism.

Piﬁase use this scale to respond to the following statements:

(a) | (b) (e) (a) (o)
Strongly Neither Agree . Strongly
Agree | Agree Nor Disagree Disagree Disagree

1. This metric¢ is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

76

Manhours Per Major Defect Detected

Definition: A measure of the manhours per defect detected
during software product reviews and inspections. This
measure provides a quantitative figure that is used to
evaluate the efficiency of the review and inspection process.

s .

T1 = time expended by the inspection (or review) team in
preparation for inspection (or review) '

T2 = time expended by the inspection (or review) team in
conduct of inspection (or review)

Si = number of major (non-trivial) defects detected
during the itR inspection (or review)

I = total number of inspections (or reviews) to date

Implementation: Record the preparation time (T1l) and total
time expended in conducting each meeting (T2). Defects are
recorded and grouped into major/minor categories. (A major
defect must be corrected for the product to function as
desired.) Times are summarized and defects cumulatively
added. The manhours per major defect detected is calculated:

I
Yy (T1+ T2)4
M= =1 T
¥ si
i=1

Please use this scale to respond to the following statements:

{a) {b) (ec) (a) (e)
Strongly Neither Agree ; Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
cobtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

77

Requirements Understandability

Definition: This is a measure of the understandability of
semantic requirements specifications (i.e. written in
English) using the Flesch-Kincaid readability formula.

Brimitives: The Flesch-Kincaid formula has two factors:
(1) sentence length in words
(2) word length in syllables

Implementation: The measure of understandability is provided
as a reading grade level (GL) according to the formula:

GL = 0.39 (Average number of words per sentence)
+ 11.8 (Average number of syllables per word)

The measure may be made of complete or partial requirements
specifications, or of single requirement statements.

Please use this scale to respond to the following statements:

(a) (b) (c) (d) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

comments:

78

Requirement Ambiguity

Definition: This measure is used to estimate the ambiguity
of a requirement, and to identify ambiguous requirements.
This ambiguity poll is performed whenever a piece of
requirements work is said to be finished.

Primitives: None.
Implementation: The poll is conducted as follows:

1. Gather a group of people to answer questions about
the document whose ambiguity is to be measured. (The group
should be as diverse as possible, at the very least including
a sample from each population that will be affected by the
eventual product.)

2. Be sure that there is no pressure to conform or no
influence of any sort of one participant on another.

3. Propose a set of questions which can be answered
with a number such as: How fast? How big? What capacity?

4. Estimate the ambiguity by comparing the highest and
lowest answers.

S. 1Interview the high and low estimators to locate the
sources of the ambiguity.

Please use this scale to respond to the following statements:

(a) (b) {c) (4) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

S. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

79

ReQquirements Traceability

Refinition: This measure aids in identifying requirements

that are either missing from, or in addition to, the original
requirements.

C . .
"Rl = number of requirements met by the architecture
R2 = number of original requirements

Implementation: A set of mappings from the requirements in
the software architecture to the original requirements 1is
created. Count each requirements met by the architecture
(R1) and count each of the original requirements (R2).
Compute the traceability measure (TM):

R1
™ = R2 x 100%

When all of the original requirements are covered in the
software architecture, the traceability measure is 100%. A
measure of less than 100% indicates that some requirements
have not been included in the software architecture.

Please use this scale to respond to the following statements:

1) (b) {c) (a) (@)
St: ngly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

80

Number of Conflicting Requirements

RDefinition: This measure 1is used to determine the
reliability of a software system, resulting from the software
architecture under consideration, as represented by a

specification based on the entity-relationship-attribute
model.

C :
List of the inputs
List of the outputs
List of the functions performed by the program

Inplementation: The mappings from the software architecture
to the requirements are identified. Mappings from the same
specification item to more than one differing requirement are
examined for requirements inconsistency. (If the same
specification item maps to two different requirements items,
the requirements should be identical. Otherwise, the
requirements are inconsistent.) Mappings from more than one
specification item to a single requirement are examined for
specification inconsistency. (If more than one specification
item maps to a single requirement, the specification should
be checked for possible inconsistency.)

Please use this scale to respond to the following statements:

(a) (b) (ec) (4) (@)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Cormments:

81

Requirements Compliance

Refipnition: This analysis is used to verify requirements
compliance by using system verification diagrams (SVDs), a
logical interconnection of stimulus response elements, which
detect inconsistencies, incompleteness, and
misinterpretations.

rimiti .

Decomposition elements (DEs):

Stimulus — external input

Function — defined input/output process

Response — result of the function

Label — numerical DE identifier

Reference — specification paragraph number
Requirement errors detected using SVDs:

N} = number due to inconsistencies

No number due to incompleteness

N3 number due to misinterpretation

1

1

Implementation: The implementation of an SVD is composed of
the following phases:

(1) The decomposition phase is initiated by mapping the
system requirement specifications into stimulus/response
elements (DEs). That is, all keywords, phrases, functiomnal
and/or performance requirements and expected outputs are
documented on decomposition forms.

(2) The graph phase uses the DEs from the decomposition
phase and logically connects them to form the SVD graph.

(3) The analysis phase examines the SVD from the graph phase
by using connectivity and reachability matrices. The various
requirement error types are determined by examining the SVD
and identifying errors as follows:

(a) Inconsistencies — Decomposition elements that do
not accurately reflect the system requirement specification.

(b) Incompleteness — Decomposition elements that do not
completely reflect the system requirement specification.

(c) Misinterpretation — Decomposition elements that do
not correctly reflect the system requirement specification.
These errors may occur during translation of the requirements
into decomposition elements, constructing the SVD graph, or
interpreting the connectivity and reachability matrices.

82

An analysis is also made of the percentages for the various
requirements error types for the respective categories:
incompleteness, and misinterpretation.

inconsistencies,

Inconsistencies (%) =

Incompleteness

Misinterpretation (%)

N1

(N + N2 + N3)

N2

(%)

(N1 + N2 + N3)

N3

x 100

x 100

(Np + N2 + N3)

x 100

Please use this scale to respond to the following statements:

(a)
Strongly
Agree

(b)

Agree

{c)
Neither Agree
Nor Disagree

(4)

Disagree

(e)
Strongly
Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the

requirements analysis process or product

(as applicable).

6. This metric would be useful during requirements analysis.

Comments:

83

Specification Completeness

RDefinition: This measure 1is used to determine the
completeness of the software specification and to identify
problem areas within the software specification.

C .
B; = number of functions not satisfactorily defined

B2 = number of functions

B3 = number of data references not having an origin

B4 = number of data references

Bs = number of defined functions not used

Bg = number of defined functions

B7 = number of referenced functions not defined

Bg = number of referenced functions

Bg = number of decision points not using all conditions,
options

B1g = number of decision points

B11 = number of condition options without processing

B12 = number of condition options

Bi3z = number of calling routines with parameters not
agreeing with defined parameters

Bl14 = number of calling routines

Bis = number of condition options not set

Bl1g = number of set condition options having no
processing

B17 = number of set condition options

B1g = number of data references having no destination

Implementation: The completeness measure (CM) 1is the
weighted sum of ten derivatives expressed as:

10
M = 2: wi Di
i=1
where for each i=1,.,10, each weight wij has a value between 0

and 1, the sum of the weights is equal to 1, and each Dj is a
derivative with a value between 0 and 1.

To calculate the completeness measure: (1) The definitions
of the primitives for the particular application must Dbe
determined, and (2) the priority associated with the

derivatives must be determined. This prioritization affects
the weights used to calculate the completeness measure.

Each derivative is determined as follows:

(B2 — B ; i
D) = _;&EE".LL = functions satisfactorily defined

84

(Bg_— B3)

Dy = By = data references having an origin
(Bg — Bs) . .
Dy = Be = defined functions used
(Bg — B7) . .
Dg = Bg UL referenced functions defined
(B — B . , .
Dg = —Aggigfgl = all condition options at decision
points
(B — B o . . .
Dg = 12312 11) = all condition options with processing
at decision points used
(Bi4 — B13) . .
D7 B14 = calling routine parameters that agree
with the called routines defined parameters
(By2 — Bis) o .
Dg = Bz = all condition options that are set
(B — B , cL
Dg = l7817 16) = processing follows set condition
options
Bg — B1sg
Dio = (Bq Ba 18) = data references that have a
destination

Please use this scale to respond to the following statements:

(a) (b) (c) (a) (e)
Strongly Neither Agree) Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

S. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

85

Cause and Effect Gr=phing

Definition: Cause and effect graphing aids in identifying
incomplete and ambiguous requirements. This measure explores
the inputs and e«pected outputs of a program and identifies
the ambiquities. Once these ambiguities are eliminated, the
specifications are considered complete and consistent.
(NOTE: A cause and effect graph is a formal transformation
of a natural laaguage specification (for example, English)
into its input conditions and expected outputs. The graph
depicts a combinatorial logic network.)

Dy i o 4 .

List of causes: distinct input conditions

List of effects: distinct output ccnditions or system
transformation (effects are caused by the changes
in the state of the system)

Aexisting = cumber of ambiguities in a program remaining
to be eliminated

Arot = total number of ambiguities identified

Implementation: Identify all requirements and divide them
into separate entities. Analyze the requirements to identify
all the causes and effects in the specification. After the
analysis is completed, assign each cause and effect a unique
identifier. (For example, El for effect one.)

Next, create the cause and effect graph:

(1) Represent each cause and each effect by a node
identified by its unique number.

(2) Intercoinect the cause and effect nodes by analyzing the
semantic content of the specification and transforming it
into a Boolean graph. Each cause and effect can be in one of
two states: true or false. Using Boolean logic, set the
possible states of the causes and determine under what
conditions each effect will be present.

(3) Annotate the graph with constraints describing
combinations of causes and effects that are impossible
because of semantic or environmental constraints.

(4) Identify as an ambiguity any cause that does nct result
in a corresponding effect, any effect that does not originate
with a cause as a source, and any combination of causes and
effects that are inconsistent with the requirement
specification or impossible to achieve.

86

The measure of ambiguities present is computed as follows:

s ar s
CE(%) = 100 x (1L — —————ge’;lsun)
tot

When all of the causes and effects are represented in the
graph and no ambiguities exist, the measure is 100%. A

measure of less than 100% indicates some ambiguities still
exist.

Please use this scale to respond to the following statements:

(a) {b) (c) (a) (@)
Strongly Neither Agree] Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:

87

"Bang"” — A Punctionality Measure

Definition: This metric is a measure of the function of the
software to be delivered as perceived by the user. It is a
measure of the software functionality as stated in
requirements specification. This measure 1is based on a
formal specification model consisting of data flow diagrams,
object (entity-relationship) diagrams, and state-transition
diagrams.

Primitives: This measure's principal primitives are:

Partitioning is used to to produce the
vehicle partition primitive
1 | Function network system requirement functional primitives
2 | bata dictionary system data data elements
3 | Object diagram retained data objects
4 |Object diagram retained data relationships
5 | State diagram control characteristic] states
6 | State diagram control characteristic | transitions

Twelve essential counts of these primitives provide the basic
metrics from which the measure of "Bang" is formulated:

FP = the count of functional primitives lying inside the
man-machine boundary

FPM = the count of modified manual functional primitives
(functions lying outside the man-machine boundary
that must be changed to accommodate installation of
the new automated system)

DE = the count of all data elements existing at and
inside the man-machine boundary

DEI = the count of input data elements — those moving
from manual primitives to automated primitives

DEO = the count of output data elements — those moving
from automated to manual primitives

DER = the count of data elements retained (stored) in
automated form

OB = the count of objects in the retained data model
(automated portion only)
RE = the count of relationships in the retained data

model (automated portion only)

88

ST = the count of states in the state transition model

TR the count of transitions in the state transition

model

TCi = the count of data tokens around the boundary of

the ith functional primitive (evaluated for each
primitive); a token is a data item that need not be
subdivided within the primitive

REj = the count of relationships involving the ith
object of the retained data model (evaluated for
each object)

Implementation: Measures of "Bang" are computed as follows:

Bang = FP x (weighting-factor-for-FpP) +

DE x (weighting-factor-for-DE) + .
A simpler and more productive way to characterize "Bang" is
to choose one of the counts as a principal indicator and use

the others to modify it. For most systems, FP is the
principal indicator. Py

Please use this scale to respond to the following statements:

(a) (b) (c) (4a) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

l. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, does a function type measure such as
this make for a good requirements analysis metric?

89

Composite Specification Measures

Definition: Requirements are represented with a composite
specification model (comprised of three views and
corresponding notations; see table below), from which
numerical counts are taken of various components of the
representacion.

Composite Specification Model (CsM)
Viewpoi l N
Functional Data Flow
Contextual Entity-Relationship
Dynamic State-Transition

The measures taken from the CSM are intended to capture the
context of the system (hence the composite nature of the
representation) in order to better understand it.

Primitives: This measure's primitives are organized
according to the three views of the CSM.

Primitives associated with the funcﬁ!onal view include:
functions, interfaces, internal arcs, internal data items,
system input/output data items, and file input/output data
items.

Primitives associated with the contextual view include:
entities, events, relationships, attributes, and value sets.

Primitives associated with the dynamic view include: states
and transitions.

Implementation: Measures are also organized according to the
three views of the CSM:

Measures associated with the functional view include:
Weighted function count
Numerical count of functional primitives
Numerical count of interfaces
Numerical count of internal arcs
Numerical count of internmal data items

Numerical count of system input/ocutput data items

90

Numerical count of file input/output data items
The measures associated with the contextual view include:
Numerical count of entities
Numerical count of events
Numerical count of relationships
Numerical count of attributes
Numerical count of value sets]
The measures associated with the dynmamic view include:
Numerical count of states

Numerical count of transitions

Please use this scale to respond to the following statements:

(a) (b) (o) (a) (o)
Strongly- Neither Agree] Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the gquality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, are these types of measures goo
requirements analysis metrics?

91

Control Flow Measures

Refinition: The following measurements were originally
created for requirements written in the control flow
requirement specification language RSL (based on the control
flow and entity—relationship models). The control flow model
is implemented through "The Requirement Network (R_NET)"; a
control flow graph consisting of nodes (specifying processing
operations) and connecting arcs. The measures are intended
to measure the complexity of the specified system in order to
better understand and manage the system development. The
measures are also intended to measure other functional and
non-functional attributes of the requirements specification,
as identified below, in order to enhance the quality of the
requirements specification.

Primitives: Each measure has its own primitive, which are
identified in the definition of each measure.

Implementation: The measures are simple counts of the
following items, except where specified otherwise.

To infer system complexity:
Number of requirement networks (R_NETS)
Number of processing activities (ALPHAS)
Number of requirement networks (R_NETs) that are enabled
directly or indirectly through a sequence of other
R_NETs
Number of global variables

Number of requirement networks (R_NETs) and processing
activities (ALPHAs) that read or write global variables

Number of requirement networks (R_NETs) and processing
activities (ALPHAs) that must be changed if a certain
data structure is modified

To infer correctness of the requirements:
Number of functions (number of R_NETs and ALPHAs in RSL)
Number of states in STM

To infer understandability of the requirements:

Nesting level of OR-nodes (predicate nodes) in a piece
of software

92

Number of states in STM

Number of data items

Usage of global data versus local data
Degree of data abstraction

Degree of data dependency

Please use this scale to respond to the following statements:

(a) (b) (c) (d) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.

(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtalnlng the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, do control flow measures make for

good requirements analysis metrics?

93

Miscellaneous Explicit Counts
Definition: The following measures are simple explicit
counts of various requirements specification attributes. The
counts are provided to allow you, the survey participant, an
opportunity to comment on various simple measures of the
requirements specification product and process.

Primitives: Each count has its own primitive. The
primitives and measures are self-evident.

Implementation: Simple counts of the following requirements
specification attributes are made in order to measure the
quality specified.
Requirements completeness:
Number of TBDs in the specification
Number of non-existent references
Number of missing specification items
Number of missing functions
NUmbe; of missing products.
Requirements consistency:
Number of conflicting requirements
Number of non-traceable requirements.
Requirements testability:
Number of testable requirements
Number <f untestable requirements.
Number of unigue requirements
Number of TBDs
Requirements specification process effectiveness:
Number of defects found during reviews
Number of problem reports generated

Number of change requests generated

94

llumber
Number
System size
Number
Number
Number

of completed change orders

of open change requests

and functionality:

of pages in the requirements specification
of input/output requirements

of constraints

Please use this scale to respond to the following statements:

(a) (b) (c) (4) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data

needed to calculate this metric is easily

obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments:
metrics?

————

Specifically, do simple measures make good

95

Completeness Checklist

Definition: This checklist measures the completeness of the
requirements specification.

Primitives: As shown in the checklist below.
Implementation: The requirements specification is inspected

using the following checklist to determine the completeness
of the specification.

Completeness Checklist

Item Score

1 |Unambiguous References
Are requirements itemized so various functions
and their inputs/outputs are Clearly
delineated?

YES = 1 NO = 0

2 |External Data References
2.1 Number of data references which are
defined.
2.2 Number of major data references.
SCORE = 2.1 + 2.2

3 Mo E - Used
3.1 Number of defined functions used.
3.2 Number of functions identified.

SCORE = 3.1 + 3.2
2 Mas F - Sof i 3
4.1 Number of identified functions defined.
4.2 Number of functions identified.
SCORE = 4.1 + 4.2

5 | Decisi - Sef 3
Is the flow of processing and all decision
points in that flow defined?

YES = 1 NO = 0

The scores are then compared to organizational or individual

project requirements or goals which are generally based on
historical data.

(Questions are on next page.)

96

Please use this scale to respond to the following statements:

(a) (b) (ec) (4) (a)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

l. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric would be useful during requirements analysis.

Comments: Specifically, do checklist type measures make good
metrics?

97

ReqQquirements Analysis Worksheet

Refinition: This worksheet contains measurements (in the
form of numerous questions) for various quality factors to be
applied to the requirements specification.

Primitives: None.

Implemencation: The requirements specification is inspected
using the following worksheet to determine the relative
quality of the specification. (NOTE: For brevity, only a
few of the many quality factor worksheet items are provided.)

Requirements Analysis Worksheet

Answer
Topic and Item Yes No
1.0 jStructure
1.1 Is an organization of the system provided which
identifies all functions and interfaces 1in the
system?
1.2 |Are there duplicate functions and/or interfaces?
1.3 Is there a definitive statement of the requirements

for the distribution of information within the
database?

1.4 Is an organization of the database provided which
identifies the types of system-level information and
the information flow within the system?

1.5 Is there a definitive statement of requirements for
code to be written according to a coding standard?

1.6 Is there a definitive statement of requirements for
processes, functions, and modules to have loose
coupling and high cohesion?

-0 Completeness and correctness
1 Is there a matrix relating itemized requirements to
major functions which implement those requirements?

2.1 | Are requirements itemized so that various functions,
their inputs and outputs, are clearly delineated?

2.3 Is the flow of processing and all decision points in
that flow described?

Are all functions identified clearly defined?

Are all data references identified clearly defined?

4

)

.8 |Are all defined functions used?

9 |Are all defined data references used?

The answers are then compared to organizational or individual
project requirements or goals which are generally based on
historical data.

98

Please use this scale to respond to the following statements:

(a) (b) (c) (aq) (e)
Strongly Neither Agree . Strongly
Agree Agree Nor Disagree Disagree Disagree

1. This metric is simple to understand and precisely defined.
(i.e., It is clear how this metric is evaluated.)

2. The data needed to calculate this metric is easily
obtained before or during requirements analysis.

3. The benefits derived from using this metric outweigh the
costs and effort of obtaining the data to use it.

4. This metric measures the quality intended to be measured.

5. This metric is insensitive to small changes in the
requirements analysis process or product (as applicable).

6. This metric wquld be useful during requirements analysis.

Comments: Specifically, are worksheets better measures of
requirements specification quality than more typical metrics?

99

1. Metrics participant perceived as having utility include:

2. Metrics participant perceived as not having utility

include:

3. Perceptions the participant has of a useful requirement

metric include:

4. Rationale the participant used to justify rating metrics

as not having utility:

S. Additional comments:

100

Mean Scores and Overall Scores

Overall

Matric Title ‘st 1 st2,St3 St4 StS5 St6 Score
Scheduln Progress ., 3.7 © 3.0 ! 3.2 , 2.5 3.3 2.8 21.3
R@gmts Do¢c Progress 3.8 2.8 + 3.2 3.0 ¢ 3.2 3.3 22.3
Fault Days Number 3.0 ° 2.3 ' 3.0 3.2 3.0 2.8 20.2
Error Dist Measure 3.2 2.8 . 3.7 ' 3.8 . 3.5 . 3.2 23.3
Manhours per Defect 3.2 . 3.0 | 3.5 . 3.0 ., 3.3 . 3.5 23.0
Rgmts Understand 4.0 3.2 1 2.2 1 2.3, 2.7 1.8 i 18.0
Rquts Ambiguity 1.8 ' 1.7 | 1.7 7 2.2 0 3.0 | 2.3 ' 15.0
RQuts Traceability [3.3 | 1.5 | 3.2 | 3.2 | 3.5 | 3.2 . 21.0
No. conflict Rqmt 1 2.5 . 2.0 | 2.5 ' 2.5 . 2.7 2.5 | 17.2
Rguts Compliance ' 2.5 i 2.7 | 2.7 | 3.2 | 3.3 | 3.3 | 2.0
Spec Completeness 127 " 2.7 " 2.8 ' 3.2 ' 3.2 ' 3.2 ' 20.8
Cause Effect Graph ‘27 1.8 2.5 | 3.3 ! 3.2 " 3.3 20.2
Bang Measure . 2.0 2.5 . 2.5 ; 2.8 . 3.3 2.8 18.8
CSM Measures 1.5 2.2 1 2.7 | 3.2 0 3.5 § 2.7 18.3
Control Flow Meas 2.5 2.5 | 3.2 ' 3.2 3.5 3.5 ¢ 21.8
Misc Counts) 3.3 2.8 3.5 3.3 3.2 3.5 23.2
Checklist 3.0 3.2 . 3.3 . 3.0 2.8 3.5 22.3
Worksheet 3.5 3.0 | 2.8 1 2.7 3.2 3.7 22.5

|
|
NOTES : : i i
o Lowest possible mean score = 1 :
Highest possible mean score = 5 ‘
Lowest possible overall score = 7

Highest possible ovegall score = 35

101

Maximum Overall Scores, Minimum Overall Scores,

and Overall Scores

Maxigum Minimum
Schedule Progress 27 ; 15 21.3
Rqmts Doc Progress i 29 ! 13 22.3
Fault Days Number 28 : 7 20.2
Brror Dist Measure , 33 N 17 23.3
Manhours per Defect 34 L 19 23.0
Rgmts Understand : 23 ' 11l ‘ 18.0
Rgmts Ambiguity ! 19 L 10 15.0
Rgmts Traceability ' 30 i 13 ' 21.0
No. Conflict Rgmt ‘ 27 l 7 ' 17.2
Rgmts Compliance 27 o 15" : 21.0
Spec Completeness ‘ 26 Il 11 . 20.8
Cause Effect Graph ' 26) 14 ! 20.2
Bang Measure : 26 IL 11 18.8
C8M Measures ‘ 26 N 11 18.3
Control Flow Meas f 28 ? 13 21.8
Misc Counts 29 16 23.2
Checklist 29 ' 7 22.3

Worksheet 30 3 14 22.5

102

Overall Scores and Standard Deviation for

each Overall Score

Overall score Overall 8core Overall

Matric Titlae +_gtdpev - StdDev —Bgore 8t Dey
8chedule Progress 25.9 16.7 21.3 4.59
Rqmts Doc Progress 28.5 l16.2 22.3 6.12
Fault Days Number 28.0 12.3 20.2 7.83
Error Dist Measure 30.6 16.0 23.3 7.28
Manhours per Defect 29.0 17.0 23.0 6.03
Rqmts Understand 22.0 14.0 18.0 4.00
Rgmts Ambiguity 18.3 11.7 15.0 3.35
Rqmts Traceablility 27 .4 14.6 21.0 6.42
No. Conflict Rqmt 24.7 9.6 17.2 7.5%
Rquts Compliance 25.4 16.6 21.0 4.38
8pec Completeness 26.7 14.9 20.8 5.91
Cause EBffect Graph 25.1 15.2 20.2 4.96
Bang Measure 25.4 . 12.2 18.8 6.59
C8M Measurass 23.6 i 13.1 18.3 5.28
Control Plow Meas 27 .5 . 16.1 21.8 5.71
Misc Counts 28.2 18.1 23.2 5.08
Checklist 30.3 14.4 22.3 7.97
Worksheet 28.6 16.4 22.5 6.09

103
A AR

Maximum Scores, Minimum Scores, and Mean Scores

for Statement Number Six

Maximum Score Minimum Score Mean Score
Matric Title - _Statement 6 _Statement € Statement 6
Schedule Progress 4 2 2.8
Rgmts Doc Progress 5 2 3.3
Fault Days Number 4 1 2.8
Error Dist Measure S 1 3.2
Manhours per Defect S 2 3.5
Rgmts Understand 3 1 1.8
R@mts Ambiguity ! 4 1 2.3
Rgats Traceability _a 5 1 3.2
No. Conflict Rgmt 8 4 ; 1 2.5
Rgats Compliance i 4 | 2 3.3
Spec Completeness ! 4 l 2 3.2
Cause Effect Graph L 4 e 2 3.3
Bang Msasure ? 4 1 2.8
CSM Measures 4 ' 1 2.7
Control Flow Meas 4 3 3.5
Misc Counts - 5 3 3.5
Checklist 5 1 3.5
Worksheet 5 2 3.7

104

Mean Scores and Standard Deviation for

Statement Number Six

Mean Score Mean Score Mean
Matric Title —+ gtdDav — - B8tdpay —8core 8t Dav
Schedule Progress 3.8 ‘ 1.9 2.8 1.0
Rgmts Doc Progress 4.4 2.3 3.3 1.0
Fault Days Number 4.3 1.4 2.8 1.8
Brror Dist Maasure 4.8 1.6 3.2 1.6
Manhours per Defect 4.5 2.5 3.5 1.0
Rqats Understand 2.6 1.1 1.8 0.8
Rgmts Ambiguity 3.5 1.1 2.3 1.2
Rgmts Traceability 4.6 1.7 3.2 1.5
No. Conflict Rqgmt 3.9 1.1 2.5 1.4
Rqmts Compliance 4.1 2.5 3.3 0.8
Spec Completenass 3.9 2.4 3.2 0.8
Cause Effect Graph 4.1 2.5 i 3.3 0.8
Bang Measure 4.0 1.7 2.8 1.2
C8M Measures 3.7 1.6 2.7 1.0
Control Plow Meas 4.0 3.0 3.5 0.5
Miso Counts 4.3 2.7 3.5 0.8
Checklist 4.9 2.1 3.8 1.4
Worksheet 4.9 2.5 3.7 1.2

105

avan ydeis o9 quby K3 o839q ®x

MmOTd 88X ax 3 8usid @duel 2IDT TTtge A3In pueies iad neesp equnpy 1boxg 1boig
Iy 18T7 UNOD TO neesy neesl o23337 1dwoD TdwWOD TIuod aoex] brquy 1spun exn 381g eleg
83I0M }OoBYD O8TW I3uoD WSO bHueg 28ne) osdg ejwby

| -) S L I S ‘ ' : !

5 = 91008 alqissod 1samol {Gf = 81008 arqissod 183UBTH FION

gIvg IOIIH ©IO0D0§ WNMTUTH/WMMIXWR Y3 M SOI0DS [TVISA0

‘oN s3juwby sjuby ejuby oyuer xoxag j1nel sjwby pasyos

ot

ST

0oc

ot

13

106

seap ydean e8 by A3 o8318d B8x 1 889 089

a8 MOTd asx ax 3 auala aouet

30T T1Tqe A3Tn pueis aad neesp aquny xboxd aboad

398y 3IPTT IUNOD 0 NOPSK Neesl 0933d Tdwod 1dwop Tjuop @oea] Brquy xapun exn 2381g eAegq oSog ofn

83I0M ¥oaYy) O8TW I3uo) WSO bBueg asned oadg suby

! ¢ t ! l - ' L I A

L.

1 = 210028 alqissod 1samoO] tg =

‘oN 83uby sjuby ejwby oyuew xoxay 1Tned ejwby payos
I ¢ 4 - ' ‘- ¢ t

21008 @1qtssod 2I82UBTH AILON

gIeg I0IX§ ©I00§ WNIUTH/UNKIXWW YITA S6I0DS TWON 9 JUSWOIelS

™

107

Agresti, William W. "An Approach to Developing Specification
Measures, Proceedings, Ninth Apnnual Software
Engineering Workshop, NASA Goddard Space Flight Center,
(November 1984).

Basili, Victor R. and H. Dieter Rombach. "Tailoring the
Software Process to Project Goals and Environments,"
E 33 £ ¢l =y . 1 conf
Software Engineering. 345-357. IEEE Computer Society
Press, (30 March—2 April 1987).

Boehm, Barry. "verifying and Validating Software
Requirements and Design Specifications," IEEE Software,
l:75—88 (January 1984).

Boeing Aerospace Company. Software Quality Measurement for
Ristributed Svstems, Volumes 1-3. Air Force Systems
Command Rome¢ Air Development Center Technical Reports
RADC—-TR—83-175—~VOL—1, RADC—TR—-83-—175-VOL—2, RADC—TR—83—
175-vOL—-3, July 1983 (AD—Al137 955, AD—-Al37 956, AD-Al37
957) .

Bush, Marilyn W. Software Product Assurxance Metrics Study:
JPL's Software Systems Quality and Productivity. JPL
Publication 89-6. Pasadena CA: NASA Jet Propulsion
Laboratory, 15 February 1989.

Cioch, Frank A. "Measuring Software Misinterpretation," The
Journal of Systems apnd Software, 15:85-95 (February
1991).

Conte, S. D. and others. Software Engineering Metrics and
Maodels. Menlo Park CA: Benjamin/Cummings Publishing
Company, Inc., 1986.

DeMarco, Tom. Controlling Software Projects. Englewood
Cliffs NJ: Yourdon Press, 1982.

Department of the Air Force. Acguisition Management:
Software Management Indicators. AFSC Pamphlet 800-43.
Andrews AFB DC: HQ AFSC, 31 August 1990.

Dziegiel, Roger J., Jr. (2 Software Engineering Branch, Air

Force Systems Command Rome Laboratories, Griffiss AFB
NY. Electronic mail message. 2 April 1991.

108

Eisenberg, Anne. Effective Technical Communication. New
York: McGraw-Hill, Inc., 1982.

Emory, C. William. Business Research Methods (Revised

Edition). Homewood IL: Richard D. Irwin, Inc., 1980.
Farbey, B. "Software Quality Metrics: Considerations About
Requirements and Requirement Specifications,"
i ' 12:60—64

(January/February 1990).

Fouser, Thomas J. gSoftware Requirements Analysis Phase Trial
Standard. JPL D—4005 (Version 3.0). Pasadena CA: NASA

Jet Propulsion Laboratory, December 1988.

Gause, Donald C. and Gerald M. Weinberg. Exploring

Requirements. Quality Before Design. New York: Dorset
House Publishing Company, Inc., 1989.

ANSI/IEEE Std 830—1984, 20 July 1984.

EE g E : sard . c
Measures to Produce Religble Software. IEEE Std 982.2—-
1988 (Corrected Edition), 12 June 1989.

EEE Stapdard Dicti . ; celiabl

Software. IEEE Std 982.1-1988, 9 June 1988.

Kitchenham, Barbara A. and others. *An Evaluation of Some

Design Metrics," Software Engineering Journal, 5:50-58
(January 1990).

Losa, J. W., CDR, USNR, and others. Readability Grade Levels
of Selected Navy Technical School Curricula. USN

Training Analysis and Evaluation Group, Orlando FL,
Technical Memorandum 83-2, February 1983 (AD—A125 862).

Mills, Everald E. §Software Metrics (SEI Curriculum Module
SEI-CM~12-1.1). Carnegie Mellon University Software
Enginsering Institute, December 1988.

National Research Council Air Force Studies Board. Adapting

Software Development Policies to Modern Technology.
Washington DC: National Academy Press, July 1989 (AD—
A213 391/6).

109

Ramamoorthy, C. V. and others. "Software Quality and
Requirement Specification," Proceedings IEEE Computer
, 086 I) 1 _conf ~
Languages. 75—83. IEEE Computer Society Press, New
York, 1986.

----- . "Metrics Guided Methodology," Proceedings IEEE
: S0c; \ e) 1¢ =of
and Applications Conference (COMPSAC86). 111—1i20. IEEE
Computer Society Press, New York, 1985.

Riney, Larry A. Technical Writing for Industry: An
Qperations Manual for the Technical Writer. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1989.

Ross, Niall. "Using Metrics in Quality Management,'" IEEE
Software, 2:80—85 (July 1990).

Schultz, Herman P. Software Management Metrics. The MITRE
Corporation, Bedford MA, May 1988 (AD—-Al96 916).

Shepperd, M. "Early Life-Cycle Metrics and Software Quality
Models," Information and Software Technology, 32:311-316
(May 1990).

Systems Architects, Inc. Computer Systems Acquisjtion
Metrics HandbogQk, Volumes 1—4. Air Force Systems
Command Electronic Systems Division Technical Reports
ESD—TR—82—143 (1), ESD—TR—82—143(2), ESD—TR—-82-143(3),
ESD—TR—82—-143(4), May 1982 (AD—Al120 375, AD-Al20 376,
AD—A120 377, AD-A120 378).

110

vita

Captain James H. Byers was born on August 13, 1963 in
Rockville Centre, New York. He graduated from General
Douglas MacArthur High School in Levittown, New York in 1981
and attended the State University of New York at Buffalo,
graduating with a Bachelor of Science Degree in Aerospace
Engineering in May 1985. Captain Byers attended the Air
Force Officer Training School in San Antonio, Texas during
the summer of 1985 and, upon graduation, was commissioned a
Second Lieutenant in the United States Air Force. He was
then assigned to the 6595th Shuttle Test Group (Air Force
Systems Command) at Vandenberg AFB, California, where he
served initially as a Space Shuttle Systems Engineer and
later as a Project Engineer. Following the Space Shuttle
Challenger accident and the subsequent deactivation of the
6595th Shuttle Test Group, he served as a Project Engineer
for the Western Space and Missile Center Titan IV/Centaur
Launch Complex Program. He entered the Air Force Institute

of Technology School of Systems and Logistics in May 1990.

111

Form Approved
REPORT DOCUMENTATION PAGE ol 0188
PUDHC ARSIt N SUrdeN for TS 2uACton O nfOfMmaton s Astimateaq to .erage | "oufl ger Tesporse ‘nt"\.amg the tme 1or reviRrwing wﬁs[r.,fii-"r‘s. uear'“:-'vx fr }l"“‘J ‘:)!f)"{\):;ff:s.
A kA A S AN M AN S A AR A A
nrarm4tio et sl g [Or regue 422) LfARN T2 Nsring By Sery. L re or o ntor 1) LG 3 Hepa L e Lattery
f;:?:i:i?,,:w 3::: '3?4 4:‘:(;’;%;??3&;223;vjm;dan(cn!% ;z OJ':G‘: ot ‘ddi\:;?':?g! ing Huage’ P3perwors Reauchion Peoject(0/04-0188). Nasrnaton _C L2903
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVFRED
December 1991 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RELATIVE UTILITY OF SELECTED SOFTWARE

REQUIREMENT METRICS
6. AUTHOR(S)

James H. Byers, Captain, USAF

D ADDRESS(ES 8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING OR
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSS/LSY/91D-4
9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING . MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a3. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The objective of this study was to determine the relative utility of selected software
requirement metrics in assessing the productivity of the software requirements analysis process and
the quality of the products of this process. This objective was met by collecting information about the
perceptions that practicing software professionals have of the usefulness of various requirement
metrics. The study employed a two part methodology. The first part utilized Basili's
goal/question/metric paradigm to identify specific goals of the measurement effort and to identify
requirement metrics worthy of further investigation. The second part employed a typical research
design to gather perceptions that software professionals have of the utility of several metrics selected
from those identified earlier. The study produced inconclusive results and further research is
recommended. Results were based on a small sample and the data only reiterated the mixed opinions
that software professionals have of the usefulness of software metrics. One significant finding is the
consensus that a metric must be precisely defined for it to be accepted by the software community.

18, SUBJECT TERMS 15. NUMBER OF PAGES
Computer Programs, Software, Software Engineering, 122
Requirements, Specifications, Measurement 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-0"-280-5500 Stardard form 098 Rev 2.89)

Tree DR By ATy 1 TS
Rt TR

AFIT Control Number AFIT/GSS/LSY/91D-4

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for cur-
rent and future applications of AFIT thesis research. Please return
completed questionnaires to: AFIT/LSC, Wright-Patterson AFB OH
45433-6583.

1. Did this research contribute to a current research project?

a. Yes b. No
2. Do you believe this research topic is significant enough that it would
have been researched (or contracted) by your organization or another
agency if AFIT had not researched it?

a. VYes b. No
3. The benefits of AFIT research can often be expressed by the equivalent
value that your agency received by virtue of AFIT performing the research.
Please estimate what this research would have cost in terms of manpower
and/or dollars if it had been accomplished under contract or if it had
been done in-house.

Man Years : »

4. (Often it is not possible to attach equivalent dollar values to
research, although the results of the research may, in fact, be important.
Whether or not you were able to estabiisi an equivalent value for this
research (3 above), what is your estimate of its significance?

a. Highly b. Significant c¢. Slightly d. 0f No
Significant Significant Significance

5. Comments

Name and Grade Organization

Position or Title Address

